- -

Digital shy maps

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital shy maps

Mostrar el registro completo del ítem

Boxer, L. (2017). Digital shy maps. Applied General Topology. 18(1):143-152. https://doi.org/10.4995/agt.2017.6663

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/79821

Ficheros en el ítem

Metadatos del ítem

Título: Digital shy maps
Autor: Boxer, Laurence
Fecha difusión:
Resumen:
[EN] We study properties of shy maps in digital topology.
Palabras clave: Digital image , Continuous multivalued function , Shy map , Isomorphism , Cartesian product; , Wedge
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2017.6663
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2017.6663
Tipo: Artículo

References

C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976. https://doi.org/10.1016/0167-8655(94)90012-4

Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Pattern Recognition Letters 10 (1999), 51-62. https://doi.org/10.1007/s10851-005-4780-y https://doi.org/10.1007/s10851-006-9698-5 [+]
C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976. https://doi.org/10.1016/0167-8655(94)90012-4

Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Pattern Recognition Letters 10 (1999), 51-62. https://doi.org/10.1007/s10851-005-4780-y https://doi.org/10.1007/s10851-006-9698-5

Boxer, L. (2005). Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision, 22(1), 19-26. doi:10.1007/s10851-005-4780-y

Boxer, L. (2006). Digital Products, Wedges, and Covering Spaces. Journal of Mathematical Imaging and Vision, 25(2), 159-171. doi:10.1007/s10851-006-9698-5

L. Boxer, Remarks on digitally continuous multivalued functions, Journal of Advances in Mathematics 9, no. 1 (2014), 1755-1762.

L. Boxer and I. Karaca, Fundamental groups for digital products, Advances and Applications in Mathematical Sciences 11, no. 4 (2012), 161-180.

Boxer, L., & Staecker, P. C. (2016). Connectivity Preserving Multivalued Functions in Digital Topology. Journal of Mathematical Imaging and Vision, 55(3), 370-377. doi:10.1007/s10851-015-0625-5

Escribano, C., Giraldo, A., & Sastre, M. A. (s. f.). Digitally Continuous Multivalued Functions. Lecture Notes in Computer Science, 81-92. doi:10.1007/978-3-540-79126-3_9

Escribano, C., Giraldo, A., & Sastre, M. A. (2011). Digitally Continuous Multivalued Functions, Morphological Operations and Thinning Algorithms. Journal of Mathematical Imaging and Vision, 42(1), 76-91. doi:10.1007/s10851-011-0277-z

Giraldo, A., & Sastre, M. A. (2015). On the Composition of Digitally Continuous Multivalued Functions. Journal of Mathematical Imaging and Vision, 53(2), 196-209. doi:10.1007/s10851-015-0570-3

HAN, S. (2005). Non-product property of the digital fundamental group. Information Sciences, 171(1-3), 73-91. doi:10.1016/j.ins.2004.03.018

V. A. Kovalevsky, A new concept for digital geometry, shape in picture, Springer, New York (1994). https://doi.org/10.1016/0167-8655(86)90017-6

Rosenfeld, A. (1986). ‘Continuous’ functions on digital pictures. Pattern Recognition Letters, 4(3), 177-184. doi:10.1016/0167-8655(86)90017-6

Tsaur, R., & Smyth, M. B. (2001). «Continuous» Multifunctions in Discrete Spaces with Applications to Fixed Point Theory. Lecture Notes in Computer Science, 75-88. doi:10.1007/3-540-45576-0_5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem