T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 19 (2013). https://doi.org/10.1186/1687-1812-2013-19
T. Abdeljawad and D. Gopal, Erratum to Meir-Keeler $alpha$-contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 110 (2013). H. Alikhani, D. Gopal, M. A. Miandaragh, Sh. Rezapour and N. Shahzad, Some endpoint results for β-generalized weak contractive multifunctions, The Scientific World Journal (2013), Article ID 948472.
Beg, I., Butt, A. R., & Radojević, S. (2010). The contraction principle for set valued mappings on a metric space with a graph. Computers & Mathematics with Applications, 60(5), 1214-1219. doi:10.1016/j.camwa.2010.06.003
[+]
T. Abdeljawad, Meir-Keeler α-contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 19 (2013). https://doi.org/10.1186/1687-1812-2013-19
T. Abdeljawad and D. Gopal, Erratum to Meir-Keeler $alpha$-contractive fixed and common fixed point theorems, Fixed Point Theory Appl. 110 (2013). H. Alikhani, D. Gopal, M. A. Miandaragh, Sh. Rezapour and N. Shahzad, Some endpoint results for β-generalized weak contractive multifunctions, The Scientific World Journal (2013), Article ID 948472.
Beg, I., Butt, A. R., & Radojević, S. (2010). The contraction principle for set valued mappings on a metric space with a graph. Computers & Mathematics with Applications, 60(5), 1214-1219. doi:10.1016/j.camwa.2010.06.003
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. (Debr.) 57 (2000), 31-37.
Cho, S.-H., Bae, J.-S., & Karapınar, E. (2013). Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory and Applications, 2013(1), 329. doi:10.1186/1687-1812-2013-329
Chandok, S. (2015). Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results. Mathematical Sciences, 9(3), 127-135. doi:10.1007/s40096-015-0159-4
Geraghty, M. A. (1973). On contractive mappings. Proceedings of the American Mathematical Society, 40(2), 604-604. doi:10.1090/s0002-9939-1973-0334176-5
GOPAL, D., ABBAS, M., PATEL, D. K., & VETRO, C. (2016). Fixed points of α -type F -contractive mappings with an application to nonlinear fractional differential equation. Acta Mathematica Scientia, 36(3), 957-970. doi:10.1016/s0252-9602(16)30052-2
Gordji, M., Ramezani, M., Cho, Y., & Pirbavafa, S. (2012). A generalization of Geraghty’s theorem in partially ordered metric spaces and applications to ordinary differential equations. Fixed Point Theory and Applications, 2012(1), 74. doi:10.1186/1687-1812-2012-74
Hussain, N., Karapinar, E., Salimi, P., & Akbar, F. (2013). alpha-Admissible mappings and related Fixed point Theorems. Journal of Inequalities and Applications, 2013(1), 114. doi:10.1186/1029-242x-2013-114
Jachymski, J. (2007). The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 136(04), 1359-1373. doi:10.1090/s0002-9939-07-09110-1
X. D. Liu, S. S. Chang, Y. Xiao and L. C. Zhao, Existence of fixed points for Θ-type contraction and Θ-type Suzuki contraction in complete metric spaces, Fixed Point Theory Appl. 8 (2016). J. Martinez-Moreno, W. Sintunavarat and Y. J. Cho, Common fixed point theorems for Geraghty's type contraction mappings using the monotone property with two metrics, Fixed Point Theory Appl. 174 (2015).
S. G. Mathews, Partial metric topology, in Proceedings of the 11th Summer Conference on General Topology and Applications 728 (1995), 183-197, The New York Academy of Sci. C. Mongkolkehai, Y. J. Cho and P. Kumam, Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theory Appl. 180 (2013).
W. Onsod and P. Kumam, Common fixed point results for φ-ψ-weak contraction mappings via f-α-admissible Mappings in intuitionistic fuzzy metric spaces, Communications in Mathematics and Applications 7 (2016), 167-178.
V. L. Rosa and P. Vetro, Fixed point for Geraghty-contractions in partial metric spaces, J. Nonlinear Sci. Appl. 7 (2014), 1-10.
Samet, B., Vetro, C., & Vetro, P. (2012). Fixed point theorems for -contractive type mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(4), 2154-2165. doi:10.1016/j.na.2011.10.014
[-]