Mostrar el registro sencillo del ítem
dc.contributor.author | Bisht, Ravindra K. | es_ES |
dc.contributor.author | Pant, R. P. | es_ES |
dc.date.accessioned | 2017-04-19T12:21:47Z | |
dc.date.available | 2017-04-19T12:21:47Z | |
dc.date.issued | 2017-04-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/79823 | |
dc.description.abstract | [EN] In this paper, we investigate some contractive definitions which are strong enough to generate a fixed point that do not force the mapping to be continuous at the fixed point. Finally, we obtain a fixed point theorem for generalized nonexpansive mappings in metric spaces by employing Meir-Keeler type conditions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fixed point | es_ES |
dc.subject | (ε δ)contractions | es_ES |
dc.subject | Power contraction | es_ES |
dc.subject | Orbital continuity | es_ES |
dc.title | Contractive definitions and discontinuity at fixed point | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-19T11:19:43Z | |
dc.identifier.doi | 10.4995/agt.2017.6713 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bisht, RK.; Pant, RP. (2017). Contractive definitions and discontinuity at fixed point. Applied General Topology. 18(1):173-182. https://doi.org/10.4995/agt.2017.6713 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2017.6713 | es_ES |
dc.description.upvformatpinicio | 173 | es_ES |
dc.description.upvformatpfin | 182 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Bisht, R. K., & Pant, R. P. (2017). A remark on discontinuity at fixed point. Journal of Mathematical Analysis and Applications, 445(2), 1239-1242. doi:10.1016/j.jmaa.2016.02.053 | es_ES |
dc.description.references | Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9 | es_ES |
dc.description.references | Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299 | es_ES |
dc.description.references | Kannan, R. (1969). Some Results on Fixed Points--II. The American Mathematical Monthly, 76(4), 405. doi:10.2307/2316437 | es_ES |
dc.description.references | Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6 | es_ES |
dc.description.references | Pant, R. P. (1999). Discontinuity and Fixed Points. Journal of Mathematical Analysis and Applications, 240(1), 284-289. doi:10.1006/jmaa.1999.6560 | es_ES |
dc.description.references | Reich, S. (1971). Some Remarks Concerning Contraction Mappings. Canadian Mathematical Bulletin, 14(1), 121-124. doi:10.4153/cmb-1971-024-9 | es_ES |
dc.description.references | Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-257. doi:10.1090/s0002-9947-1977-0433430-4 | es_ES |
dc.description.references | Rhoades, B. E. (1988). Contractive definitions and continuity. Contemporary Mathematics, 233-245. doi:10.1090/conm/072/956495 | es_ES |