- -

Probability fields revisited in the context of ensemble Kalman filtering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probability fields revisited in the context of ensemble Kalman filtering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xu, Teng es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2017-04-25T11:20:52Z
dc.date.available 2017-04-25T11:20:52Z
dc.date.issued 2015-12
dc.identifier.issn 0022-1694
dc.identifier.uri http://hdl.handle.net/10251/79930
dc.description.abstract Hu et al. (2013) proposed an approach to update complex geological fades models generated by multiple-point geostatistical simulation while keeping geological and statistical consistency. Their approach is based on mapping the fades realization onto the spatially uncorrelated uniform random numbers used by the sequential multiple-point simulation to generate the facies realization itself. The ensemble Kalman filter was then used to update the uniform random number realizations, which were then used to generate a new fades realization by multiple-point simulation. This approach has not a good performance that we attribute to the fact that, being the probabilities random and spatially uncorrelated, their correlation with the state variable (piezometric heads) is very weak, and the Kalman gain is always small. The approach is reminiscent of the probability field simulation, which also maps the conductivity realizations onto a field of uniform random numbers; although the mapping now is done using the local conditional distribution functions built based on a prior statistical model and the conditioning data. Contrary to Hu et al. (2013) approach, this field of uniform random numbers, termed a probability field, displays spatial patterns related to the conductivity spatial patterns, and, therefore, the correlation between probabilities and state variable is as strong as the correlation between conductivities and state variable could be. Similarly to Hu et al. (2013), we propose to use the ensemble Kalman filter to update the probability fields, and show that the existence of this correlation between probability values and state variables provides better results. es_ES
dc.description.sponsorship The first author acknowledges the financial support from the China Scholarship Council (CSC). Part of this work was done while the second author was on sabbatical with the Kansas Geological Survey, Kansas University, Lawrence, KS, USA, which was funded by the Spanish Ministry of Education, Culture and Sports through grant PRX14/00501. Financial support to carry out this work was also received from the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Hydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MPS es_ES
dc.subject Non-Gaussian es_ES
dc.subject Sequential simulation es_ES
dc.subject Inverse modeling es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Probability fields revisited in the context of ensemble Kalman filtering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jhydrol.2015.06.062
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX14%2F00501/ES/PRX14%2F00501/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Xu, T.; Gómez-Hernández, JJ. (2015). Probability fields revisited in the context of ensemble Kalman filtering. Journal of Hydrology. 531(1):40-52. https://doi.org/10.1016/j.jhydrol.2015.06.062 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jhydrol.2015.06.062 es_ES
dc.description.upvformatpinicio 40 es_ES
dc.description.upvformatpfin 52 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 531 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 300564 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder China Scholarship Council es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem