- -

Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aznar, Ramon es_ES
dc.contributor.author Moreno-Ramón, Héctor es_ES
dc.contributor.author Albero, Beatriz es_ES
dc.contributor.author Sánchez Brunete, Consuelo es_ES
dc.contributor.author Tadeo, José L. es_ES
dc.coverage.spatial east=-0.35396575927734375; north=39.33934263573621; name=El Palmar, València, Espanya es_ES
dc.date.accessioned 2017-04-27T06:33:14Z
dc.date.available 2017-04-27T06:33:14Z
dc.date.issued 2016-04-02
dc.identifier.issn 1439-0108
dc.identifier.uri http://hdl.handle.net/10251/80077
dc.description.abstract [EN] The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography mass spectrometry (GC MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p&#8201;<&#8201;0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations &#8804;57.0 ng g&#8722;1 before plow and &#8804;62.3 ng g&#8722;1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water from WWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil. es_ES
dc.description.sponsorship Authors wish to thank INIA for the predoctoral fellowship (R. Aznar) and Spanish Ministry of Economy and Competitiveness RTA2014-00012-C03-01 for financial support and Jonathan Villanueva Martin for his contribution to this work. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Soils and Sediments es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gas chromatography - mass spectrometry es_ES
dc.subject Geographical information system es_ES
dc.subject Insecticides es_ES
dc.subject Pyrethroids es_ES
dc.subject Soil es_ES
dc.subject Wetlands es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11368-016-1417-2
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2014-00012-C03-01/ES/Determinación de los niveles y evaluación del comportamiento ambiental de antibióticos y otros contaminantes emergentes en enmiendas orgánicas, en el suelo y en el cultivo tras la aplicación de las enmiendas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Aznar, R.; Moreno-Ramón, H.; Albero, B.; Sánchez Brunete, C.; Tadeo, JL. (2016). Spatio-temporal distribution of pyrethroids in soil in Mediterranean paddy fields. Journal of Soils and Sediments. 17(5):1503-1513. https://doi.org/10.1007/s11368-016-1417-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11368-016-1417-2 es_ES
dc.description.upvformatpinicio 1503 es_ES
dc.description.upvformatpfin 1513 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 305524 es_ES
dc.identifier.eissn 1614-7480
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albaseer SS, Rao RN, Swamy YV, Mukkanti K (2010) An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. J Chromatogr A 1217(35):5537–5554 es_ES
dc.description.references Alonso MB, Feo ML, Corcellas C, Vidal LG, Bertozzi CP, Marigo J, Secchi ER, Bassoi M, Azevedo AF, Dorneles PR, Torres JPM, Lailson-Brito J, Malm O, Eljarrat E, Barcelo D (2012) Pyrethroids: a new threat to marine mammals? Environ Int 47:99–106 es_ES
dc.description.references Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24(4):966–972 es_ES
dc.description.references Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Eco Environ 123(4):247–260 es_ES
dc.description.references Aznar R, Albero B, Sanchez-Brunete C, Miguel E, Tadeo JL (2014) Multiresidue analysis of insecticides and other selected environmental contaminants in poultry manure by gas chromatography/mass spectrometry. J AOAC Int 97(4):978–986 es_ES
dc.description.references Campo J, Masia A, Blasco C, Pico Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean River Basins. J Hazard Mater 263:146–157 es_ES
dc.description.references European Commission (2002) Review report for the active substance Cyfluthrin, 6843/VI/97-final es_ES
dc.description.references European Commission (2004) Review report for the active substance α-Cypermethrin, SANCO/4335/2000-final es_ES
dc.description.references European Commission (2005) Review report for the active substance Esfenvalerate, 6846/VI/97-final es_ES
dc.description.references Feo ML, Ginebreda A, Eljarrat E, Barcelo D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393(3-4):156–162 es_ES
dc.description.references Fojut TL, Palumbo AJ, Tjeerdema RS (2012) Aquatic life water quality criteria derived via the UC Davis method: II. Pyrethroid insecticides. Rev Environ Contam Toxicol 216:51–103 es_ES
dc.description.references Gan J, Lee SJ, Liu WP, Haver DL, KAbashima JN (2005) Distribution and persistence of pyrethroids in runoff sediments. J Environ Qual 34:836–841 es_ES
dc.description.references Hill IR (1985) Aquatic organisms and pyrethroids. Pestic Sci 27:429–465 es_ES
dc.description.references Huang LM, Thompson A, Zhang GL, Chen LM, Han GZ, Gong ZT (2015) The use of chronosequences in studies of paddy soil evolution: a review. Geoderma 237:199–210 es_ES
dc.description.references Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–189 es_ES
dc.description.references Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170 es_ES
dc.description.references Mahabali S, Spagnoghe P (2014) Mitigation of two insecticides by wetlands plants: feasibility study for the treatment of agricultural runoff in Suriname (South America). Water Air Soil Pollut 225:1771 es_ES
dc.description.references Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin UM, Gentle WE (2002) Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21(1):9–15 es_ES
dc.description.references Maund SJ, Campbell PJ, Giddings JM, Hamer MJ, Henry K, Pilling ED, Warinton JS, Wheeler JR (2012) Ecotoxicology of synthetic pyrethroids. Top Curr Chem 314:137–165 es_ES
dc.description.references Money E, Carter GP, Serre ML (2009) Using river distances in the space/time estimation of dissolved oxygen along two impaired river networks in New Jersey. Water Res 43(7):1948–1958 es_ES
dc.description.references Moore MT, Cooper CM, Smith S, Jr Cullum RF, Knight SS, Locke MA, Bennett ER (2009) Mitigation of two pyrethroid insecticides in Mississippi Delta constructed wetland. Environ Pollut 157:250–256 es_ES
dc.description.references Moreno-Ramón H, Marqués-Mateu A, Ibáñez-Asensio S, Gisbert JM (2015) Wetland soils under rice management and seawater intrusion: characterization and classification. Spa J Soil Sci 5(2):111–129 es_ES
dc.description.references Nawaz MF, Bourrie G, Trolard F, Mouret JC, Henry P (2013) Effects of agronomic practices on the physico-chemical properties of soil waters in rice culture. Turk J Agric For 37(2):195–202 es_ES
dc.description.references Oros DR, Werner I (2005) Pyrethroid insecticides: an analysis of use patterns, distributions, potential toxicity and fate in the Sacramento-San Joaquin Delta and Central Valley. White Paper for the Interagency Ecological Program. SFEI Contribution 415. San Francisco Estuary Institute, Oakland, CA es_ES
dc.description.references Pascual-Aguilar J, Andreu V, Gimeno-Garcia E, Pico Y (2015) Current anthropogenic pressures on agro-ecological protected coastal wetlands. Sci Total Environ 03:190–199 es_ES
dc.description.references Soil Survey Staff (2014a) Soil survey field and laboratory methods manual. Soil survey investigations report no. 51, version 2.0. In: Burt R, Soil Survey Staff (eds). U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, p 407 es_ES
dc.description.references Soil Survey Staff (ed) (2014b) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, p 372 es_ES
dc.description.references Song Y, Kai J, Song X, Zhang W, Li L (2015) Long-term toxic effects of deltamethrin and fenvalerate in soil. J Hazard Mater 289:158–164 es_ES
dc.description.references Weston DP, Holmes RW, You J, Lydy MJ (2005) Aquatic toxicity due to residential use of pyrethroid insecticides. Environ Sci Technol 39(24):9778–9784 es_ES
dc.description.references Weston DP, Ramil HL, Lydy MJ (2013) Pyrethroid insecticides in municipal wastewater. Environ Toxicol Chem 32(11):2460–2468 es_ES
dc.description.references Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–1103 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem