Mostrar el registro sencillo del ítem
dc.contributor.author | Gualberto-Fernandes, Tarcisio Jose | es_ES |
dc.contributor.author | Campo García, Antonio Dámaso del | es_ES |
dc.contributor.author | García Bartual, Rafael Luis | es_ES |
dc.contributor.author | GONZÁLEZ-SANCHIS, MARÍA DEL CARMEN | es_ES |
dc.coverage.spatial | east=-1.192757400000005; north=39.06144539999999; name=46620 Aiora, València, Espanya | es_ES |
dc.date.accessioned | 2017-04-27T07:19:06Z | |
dc.date.available | 2017-04-27T07:19:06Z | |
dc.date.issued | 2016-02 | |
dc.identifier.issn | 1971-7458 | |
dc.identifier.uri | http://hdl.handle.net/10251/80086 | |
dc.description.abstract | [EN] Estimating forest transpiration is of great importance for Adaptive Forest Management (AFM) in the scope of climate change prediction. AFM in the Mediterranean region usually generates a mosaic of different canopy covers within the same forest. Several models and methods are available to estimate forest transpiration, but most require a homogeneous forest cover, or an individual calibration/validation process for each cover stand. Hence, a model capable of reproducing accurately the transpiration of the whole canopy-cover mosaic is necessary. In this paper, the use of Artificial Neural Network (ANN) is proposed as a flexible tool for estimating forest transpiration using the forest cover as an input variable. To that end, sap flow, soil water content and other environmental variables were experimentally collected under five Aleppo pine stands of different canopy covers for two years. These sets of inputs were then used for the ANN training. Stand transpiration was accurately estimated using climate data, soil water content and forest cover through the ANN approach (correlation coefficient R = 0.95; Nash-Sutcliffe coefficient E = 0.90; root-meansquare error RMSE = 0.078 mm day(-1)). Finally, the input value for soil water content (when not available) was computed using the process-based model Gotilwa+. Then, this computed soil water content was used as input in the proposed ANN. This combination predicted the forest transpiration with values of R = 0.90, E = 0.63, and RMSE = 0.068 mm day(-1). Artificial Neural Network proved to be a useful and flexible tool to predict the transpiration dynamics of an Aleppo pine stand regardless of the heterogeneity of the forest cover produced by adaptive forest management. | es_ES |
dc.description.sponsorship | The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and the VAERSA staff for allowing the use of the La Hunde experimental forest and for assistance in carrying out the fieldwork. The authors thank Rafael Herrera and Lelys Bravo de Guenni for their critical reviews of earlier versions of this manuscript. The authors thank Sabina Cerruto Ribeiro for improving the English language. The authors thank the reviewers for their contributions to improve the scientific quality of this paper. TJGF thanks the Mundus 17 program, coordinated by the University of Porto, Portugal. This study is a part of research projects: "CGL2011-28776-C02-02, HYDROSIL", "CGL 2014-58127-C3-2, SILWAMED," funded by the Spanish Ministry of Science and Innovation and FEDER funds, and "Determination of hydrologic and forest recovery factors in Mediterranean forests and their social perception", led by Dr. Eduardo Rojas and supported by the Ministry of Environment, Rural and Marine Affairs (Spanish Government). | en_EN |
dc.language | Inglés | es_ES |
dc.relation.ispartof | iForest: biogeosciences and forestry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Adaptative forest management | es_ES |
dc.subject | Artificial neural network (ANN) | es_ES |
dc.subject | Forest water use | es_ES |
dc.subject | Pinus halepensis Mill | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Coupling daily transpiration modelling with forest management in a semiarid pine plantation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3832/ifor1290-008 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-02/ES/CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Gualberto-Fernandes, TJ.; Campo García, ADD.; García Bartual, RL.; González-Sanchis, MDC. (2016). Coupling daily transpiration modelling with forest management in a semiarid pine plantation. iForest: biogeosciences and forestry. 9:38-48. https://doi.org/10.3832/ifor1290-008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.3832/ifor1290-008 | es_ES |
dc.description.upvformatpinicio | 38 | es_ES |
dc.description.upvformatpfin | 48 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.relation.senia | 306584 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |