- -

Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal-Ferràndiz, Antoni es_ES
dc.contributor.author Fayez Moustafa Moawad, Ragab es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2017-04-27T10:34:22Z
dc.date.available 2017-04-27T10:34:22Z
dc.date.issued 2016-01
dc.identifier.issn 0377-0427
dc.identifier.uri http://hdl.handle.net/10251/80111
dc.description.abstract To simulate the behaviour of a nuclear power reactor it is necessary to be able to integrate the time-dependent neutron diffusion equation inside the reactor core. Here the spatial discretization of this equation is done using a finite element method that permits h-p refinements for different geometries. This means that the accuracy of the solution can be improved refining the spatial mesh (h-refinement) and also increasing the degree of the polynomial expansions used in the finite element method (p-refinement). Transients involving the movement of the control rod banks have the problem known as the rod-cusping effect. Previous studies have usually approached the problem using a fixed mesh scheme defining averaged material properties. The present work proposes the use of a moving mesh scheme that uses spatial meshes that change with the movement of the control rods avoiding the necessity of using equivalent material cross sections for the partially inserted cells. The performance of the moving mesh scheme is tested studying one-dimensional and three-dimensional benchmark problems. (C) 2015 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion under project ENE2011-22823, the Generalitat Valenciana under projects II/2014/08 and ACOMP/2013/237, and the Universitat Politecnica de Valencia under project UPPTE/2012/118. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rod-cusping problem es_ES
dc.subject Moving mesh scheme es_ES
dc.subject Finite element method es_ES
dc.subject Neutron diffusion equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2015.03.040
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPPTE%2F2012%2F118/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F237/ES/Valiun-3d. Verificacion, Validacion, Mejora y Cuantificacion de Incertidumbre en Codigos 3d-Nth para Analisis de Seguridad/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2011-22823/ES/VALIUN-3D: VERIFICACION, VALIDACION, MEJORA Y CUANTIFICACION DE INCERTIDUMBRE EN CODIGOS 3D-NTH PARA ANALISIS DE SEGURIDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Vidal-Ferràndiz, A.; Fayez Moustafa Moawad, R.; Ginestar Peiro, D.; Verdú Martín, GJ. (2016). Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry. Journal of Computational and Applied Mathematics. 291:197-208. https://doi.org/10.1016/j.cam.2015.03.040 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.cam.2015.03.040 es_ES
dc.description.upvformatpinicio 197 es_ES
dc.description.upvformatpfin 208 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 291 es_ES
dc.relation.senia 316674 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem