Mostrar el registro sencillo del ítem
dc.contributor.author | Almenar, Pedro | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2017-04-27T14:38:24Z | |
dc.date.available | 2017-04-27T14:38:24Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1687-9643 | |
dc.identifier.uri | http://hdl.handle.net/10251/80138 | |
dc.description | Copyright © 2016 P. Almenar and L. Jodar. This is an open access article distributed under the Creative Commons Attribution ´ License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | es_ES |
dc.description.abstract | [EN] This paper presents a modification of a recursive method described in a previous paper of the authors, which yields necessary and sufficient conditions for the existence of solutions of a class of 𝑛�th-order linear boundary value problems, in the form of integral inequalities. Such a modification simplifies the assessment of the conditions on restricting the inequality to be verified to a single point instead of the full interval where the boundary value problem is defined. The paper also provides an error bound that needs to be considered in the integral inequalities of the previous paper when they are calculated numerically | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia y Competitividad Grant MTM2013-41765-P. | |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | International Journal of Differential Equations | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Focal points | es_ES |
dc.subject | Comparison theorems | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Positive solutions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Improving Results on Solvability of a Class of nth-Order Linear Boundary Value Problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2016/3750530 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses | es_ES |
dc.description.bibliographicCitation | Almenar, P.; Jódar Sánchez, LA. (2016). Improving Results on Solvability of a Class of nth-Order Linear Boundary Value Problems. International Journal of Differential Equations. https://doi.org/10.1155/2016/3750530 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2016/3750530 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 327791 | es_ES |
dc.identifier.eissn | 1687-9651 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405 | es_ES |
dc.description.references | Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625 | es_ES |
dc.description.references | Gentry, R. D., & Travis, C. C. (1976). Comparison of eigenvalues associated with linear differential equations of arbitrary order. Transactions of the American Mathematical Society, 223, 167-167. doi:10.1090/s0002-9947-1976-0425241-x | es_ES |
dc.description.references | Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7 | es_ES |
dc.description.references | Tomastik, E. C. (1983). Comparison Theorems for Second Order Nonselfadjoint Differential Systems. SIAM Journal on Mathematical Analysis, 14(1), 60-65. doi:10.1137/0514005 | es_ES |
dc.description.references | Hankerson, D., & Henderson, J. (1990). Positive Solutions and Extremal Points for Differential Equations. Applicable Analysis, 39(2-3), 193-207. doi:10.1080/00036819008839980 | es_ES |
dc.description.references | Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-k | es_ES |
dc.description.references | Eloe, P. W., & Henderson, J. (1993). Focal Points and Comparison Theorems for a Class of Two Point Boundary Value Problems. Journal of Differential Equations, 103(2), 375-386. doi:10.1006/jdeq.1993.1055 | es_ES |
dc.description.references | Eloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003 | es_ES |
dc.description.references | Eloe, P. ., Henderson, J., & Thompson, H. . (2000). Extremal points for impulsive Lidstone boundary value problems. Mathematical and Computer Modelling, 32(5-6), 687-698. doi:10.1016/s0895-7177(00)00165-5 | es_ES |
dc.description.references | Eloe, P. W., & Ahmad, B. (2005). Positive solutions of a nonlinear <mml:math altimg=«si1.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mi>n</mml:mi></mml:math>th order boundary value problem with nonlocal conditions. Applied Mathematics Letters, 18(5), 521-527. doi:10.1016/j.aml.2004.05.009 | es_ES |
dc.description.references | Graef, J. R., & Yang, B. (2006). Positive solutions to a multi-point higher order boundary value problem. Journal of Mathematical Analysis and Applications, 316(2), 409-421. doi:10.1016/j.jmaa.2005.04.049 | es_ES |
dc.description.references | Graef, J. R., Kong, L., & Wang, H. (2008). Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. Journal of Differential Equations, 245(5), 1185-1197. doi:10.1016/j.jde.2008.06.012 | es_ES |
dc.description.references | Zhang, X., Feng, M., & Ge, W. (2009). Existence and nonexistence of positive solutions for a class of nth-order three-point boundary value problems in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(2), 584-597. doi:10.1016/j.na.2007.12.028 | es_ES |
dc.description.references | Zhang, P. (2011). Iterative Solutions of Singular Boundary Value Problems of Third-Order Differential Equation. Boundary Value Problems, 2011, 1-10. doi:10.1155/2011/483057 | es_ES |
dc.description.references | Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051 | es_ES |
dc.description.references | Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6 | es_ES |
dc.description.references | Eloe, P. W., & Ridenhour, J. (1994). Sign Properties of Green’s Functions for a Family of Two-Point Boundary Value Problems. Proceedings of the American Mathematical Society, 120(2), 443. doi:10.2307/2159880 | es_ES |
dc.description.references | Hämmerlin, G., & Hoffman, K.-H. (1991). Numerical Mathematics. Undergraduate Texts in Mathematics. doi:10.1007/978-1-4612-4442-4 | es_ES |