- -

Pattern of genetic variability of Solanum habrochaites in its natural area of distribution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pattern of genetic variability of Solanum habrochaites in its natural area of distribution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sifres Cuerda, Alicia Gemma es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.date.accessioned 2017-04-28T10:07:46Z
dc.date.available 2017-04-28T10:07:46Z
dc.date.issued 2011-03
dc.identifier.issn 0925-9864
dc.identifier.uri http://hdl.handle.net/10251/80199
dc.description.abstract The tomato wild relative species Solanum habrochaites (previously known as Lycopersicon hirsutum) is a potential source of novel genes for tomato breeding. It shows resistance to many diseases and pests, cold tolerance and fruit quality traits. This species inhabits the western Andean slopes at high elevations from central Ecuador to central Peru. In this study the genetic variation of S. habrochaites was studied using 91 accessions from the whole range of distribution of this species. To this end, we employed two kinds of markers: 9 SSRs and 6 AFLP combinations. The Principal Coordinate Analysis based on AFLP data showed the existence of clinal genetic variation from north to south. The accessions of the different geographic groups were sequentially arranged in the first axis from north to south and a clear separation between them was found. The groups from the centre of the area of distribution showed the highest variation and heterozygosis. The ones from the margins showed lower variability and presented higher homozygosis. The morphotypes typicum and glabratum considered by Müller constituted the extreme forms of the continuous variation in the pubescence grade. These differences in pubescence were not associated with the homozygosis grade. © 2010 Springer Science+Business Media B.V. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Genetic Resources and Crop Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AFLP es_ES
dc.subject Genetic variability es_ES
dc.subject Geographic differentiation es_ES
dc.subject Solanum habrochaites es_ES
dc.subject SSR es_ES
dc.subject Breeding es_ES
dc.subject Cold tolerance es_ES
dc.subject Dicotyledon es_ES
dc.subject Gene es_ES
dc.subject Genetic variation es_ES
dc.subject Geographical distribution es_ES
dc.subject Heterozygosity es_ES
dc.subject Principal component analysis es_ES
dc.subject Ecuador es_ES
dc.subject Peru es_ES
dc.subject Lycopersicon esculentum es_ES
dc.subject Lycopersicon hirsutum es_ES
dc.subject Solanum es_ES
dc.subject.classification GENETICA es_ES
dc.title Pattern of genetic variability of Solanum habrochaites in its natural area of distribution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10722-010-9578-0
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Sifres Cuerda, AG.; Blanca Postigo, JM.; Nuez Viñals, F. (2011). Pattern of genetic variability of Solanum habrochaites in its natural area of distribution. Genetic Resources and Crop Evolution. 58(3):347-360. doi:10.1007/s10722-010-9578-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10722-010-9578-0 es_ES
dc.description.upvformatpinicio 347 es_ES
dc.description.upvformatpfin 360 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 218613 es_ES
dc.description.references Baker HG (1955) Self-compatibility and establishment after long-distance dispersal. Evolution 9:347–348 es_ES
dc.description.references Belkhir K, Borsa P, Chikhi L, Rafaste N, Bonhomme T (1996) Genetix 4.04 Logiciel sours Windous TM pour la genetique des populations. Laboratoire Génome, populations, interactions, Université de Montpellier II, Montpellier. Website http://www.genetix.univ-montp2.fr/genetix/genetix.htm es_ES
dc.description.references Benham J, Jeung JU, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. Department of Plant Science, Montana State University, Bozeman es_ES
dc.description.references Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397 es_ES
dc.description.references Bornet B, Goraguer F, Joly G, Brachard M (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45:481–484 es_ES
dc.description.references Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359 es_ES
dc.description.references Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570 es_ES
dc.description.references Coulibaly S, Pasquet R, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366 es_ES
dc.description.references Ercolano MR, Sebastiano A, Monti L, Frusciante L, Barone A (2005) Molecular characterization of Solanum habrochaites accessions. J Genet Breed 59:15–20 es_ES
dc.description.references Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50 es_ES
dc.description.references Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) v3.69. Department of Genome Sciences and Department of Biology. University of Washington. Washington. EEUU. Website http://www.evolution.genetics.washington.edu/phylip.html es_ES
dc.description.references Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282 es_ES
dc.description.references Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107 es_ES
dc.description.references Gower JC (1966) Some distance properties of latent roots and vector methods used in multivariate analysis. Biometrika 53:325–338 es_ES
dc.description.references Guo ZH, Weston PA, Snyder JC (1993) Repellency to 2-spotted spider-mite, Tetranychus urticae Koch, as related to leaf surface-chemistry of Lycopersicon hirsutum accessions. J Chem Ecol 19:2965–2979 es_ES
dc.description.references Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510 es_ES
dc.description.references Langella O (2002) Populations 1.2.28, Population genetic software. CNRS Website http://www.bioinformatics.org/~tryphon/populations/ es_ES
dc.description.references Leite G, Picanco M, Guedes R, Zanuncio J (2001) Role of plant age in the resistance of Lycopersicon hirsutum f. glabratum to the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Sci Hortic 89:103–113 es_ES
dc.description.references Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220 es_ES
dc.description.references Momotaz A, Scott JW, Schuster DJ (2005) Searching for silverleaf whitefly and begomovirus resistance genes from Lycopersicon hirsutum accession LA1777. Acta Hort 695:417–422 es_ES
dc.description.references Monforte A, Tanksley S (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813 es_ES
dc.description.references Müller CH (1940) A revision of the genus Lycopersicon. United States Department of Agriculture. Misc Publ No 382 es_ES
dc.description.references Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323 es_ES
dc.description.references Nuez F, Prohens J, Blanca JM (2004) Relationships origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99 es_ES
dc.description.references Nuez F, Diez MJ, Valcarcel JV, Cebolla-Cornejo J, Perez A, Soler S, Rosello S, Adalid A, Galiana L, Sifres A, Pico B, Blanca JM, Frutos R (2008) Genetic resources of Lycopersicon at the institute for the conservation and improvement of the agrodiversity. Acta Hortic 789:293–297 es_ES
dc.description.references Peralta IE, Spooner DM, Knapp S (2008) The taxonomy of tomatoes: a revision of wild tomatoes (Solanum section Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides. Syst Bot Monogr 84:1–186 + 3 plates es_ES
dc.description.references Phillips N, Larson S, Drost D (2008) Detection of genetic variation in wild populations of three Allium species using amplified fragment length polymorphisms. HortScience 43:637–643 es_ES
dc.description.references Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. http://www.pritch.bsd.uchicago.edu/structure.html es_ES
dc.description.references Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22 es_ES
dc.description.references Rick CM (1982) The potential of exotic germplasm for tomato improvement. In: Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press Inc., New York, pp 1–28 es_ES
dc.description.references Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170 es_ES
dc.description.references Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298 es_ES
dc.description.references Sacks E, St. Clair D (1998) Variation among seven genotypes of Lycopersicon esculentum and 36 accessions of L. hirsutum for interspecific crossability. Euphytica 101:185–191 es_ES
dc.description.references Sifres A (2003) Variabilidad de Lycopersicon spp. en su área de distribución natural influenciada por el fenómeno climatológico de “El Niño”. PhD Thesis, Universidad Politécnica de Valencia, Valencia, Spain es_ES
dc.description.references Sifres A, Pico B, Blanca J, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997–1998. Genet Resour Crop Evol 54:359–377 es_ES
dc.description.references Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272 es_ES
dc.description.references Snyder JC, Guo ZH, Thacker R, Goodman J, Stpyrek J (1993) 2, 3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider-mites. J Chem Ecol 19:2981–2997 es_ES
dc.description.references Vavilov NI (1927) Geographical regularities in the distribution of the genes of cultivated plants. Bull Appl Bot Genet Plant Breed 17:411–428 es_ES
dc.description.references Vidavsky F, Czosnek H (1998) Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914 es_ES
dc.description.references Weigend M (2002) Observations on the biogeography of the Amotape-Huancabamba Zone in northern Peru. Bot Rev 68:38–54 es_ES
dc.description.references Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370 es_ES
dc.description.references Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Alberta. http://www.ualberta.ca/~fyeh/index.htm es_ES
dc.description.references Young KR, Reynel C (1997) Huancabamba region, Perú and Ecuador. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation, 3: North America, Middle America, South America, Caribbean Island. IUCN, Cambridge es_ES
dc.description.references Zuriaga E, Blanca J, Nuez F (2009a) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678 es_ES
dc.description.references Zuriaga E, Blanca J, Cordero L, Sifres A, Blas-Cerdan W, Morales R (2009b) Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol 56:39–51 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem