- -

Dark matter search results from the PICO-60 CF3I bubble chamber

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dark matter search results from the PICO-60 CF3I bubble chamber

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Amole, C. es_ES
dc.contributor.author Ardid Ramírez, Miguel es_ES
dc.contributor.author Asner, D. M. es_ES
dc.contributor.author Baxter, D. es_ES
dc.contributor.author Behnke, E. es_ES
dc.contributor.author Bhattacharjee, P. es_ES
dc.contributor.author Borsodi, H. es_ES
dc.contributor.author Bou Cabo, Manuel es_ES
dc.contributor.author Brice, S. J. es_ES
dc.contributor.author Broemmelsiek, D. es_ES
dc.contributor.author Clark, K. es_ES
dc.contributor.author Collar, J. I. es_ES
dc.contributor.author Cooper, P. S. es_ES
dc.contributor.author Crisler, M. es_ES
dc.contributor.author Felis Enguix, Iván es_ES
dc.date.accessioned 2017-05-02T10:34:47Z
dc.date.available 2017-05-02T10:34:47Z
dc.date.issued 2016-03-28
dc.identifier.issn 2470-0010
dc.identifier.uri http://hdl.handle.net/10251/80310
dc.description.abstract New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent with those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out. es_ES
dc.description.sponsorship The PICO Collaboration would like to thank SNOLAB and its staff for providing an exceptional underground laboratory space and invaluable technical support. We acknowledge technical assistance from Fermilab's Computing, Particle Physics, and Accelerator Divisions and from A. Behnke at IUSB. We thank V. Gluscevic and S. McDermott for useful conversations and their assistance with the DMDD code package. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award No. DE-SC-0012161. Fermi National Accelerator Laboratory is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359. Part of the research described in this paper was conducted under the Ultra Sensitive Nuclear Measurements Initiative at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. We acknowledge the National Science Foundation for their support including Grants No. PHY-1242637, No. PHY-0919526, and No. PHY-1205987. We acknowledge the support of the National Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI). We thank the Kavli Institute for Cosmological Physics at the University of Chicago. We were also supported by the Spanish Ministerio de Economia y Competitividad, Consolider MultiDark CSD2009-00064 Grant. We thank the Department of Atomic Energy (DAE), Government of India, under the project CAPP-II at SINP, Kolkata. We acknowledge the Czech Ministry of Education, Youth and Sports, Grant No. LM2011027. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review D es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Dark matter search results from the PICO-60 CF3I bubble chamber es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevD.93.052014
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-SC-0012161/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF/Directorate for Mathematical & Physical Sciences/0919526/US/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/NSF/Directorate for Mathematical & Physical Sciences/1242637/US/
dc.relation.projectID info:eu-repo/grantAgreement/Fermilab//DE-AC02-07CH11359/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF/Directorate for Mathematical & Physical Sciences/1205987/US/
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1242637/US/Construction of the COUPP-500kg Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1205987/US/RUI: Searching for WIMP Dark Matter With Superheated Liquids/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0919526/US/COUPP-500 kg: Design of a large-Mass Bubble Chamber for Dark Matter Detection/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00064/ES/Método de Multimensajeros para la Detección de la Materia Oscura/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MSMT//LM2011027/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Amole, C.; Ardid Ramírez, M.; Asner, DM.; Baxter, D.; Behnke, E.; Bhattacharjee, P.; Borsodi, H.... (2016). Dark matter search results from the PICO-60 CF3I bubble chamber. Physical Review D. 93(5):1-14. https://doi.org/10.1103/PhysRevD.93.052014 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevD.93.052014 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 93 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 320192 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fermilab es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Ministry of Education, Youth and Sports, República Checa es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Canada Foundation for Innovation es_ES
dc.contributor.funder Department of Atomic Energy, Government of India es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.description.references Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., … Wright, E. L. (2009). FIVE-YEARWILKINSON MICROWAVE ANISOTROPY PROBEOBSERVATIONS: COSMOLOGICAL INTERPRETATION. The Astrophysical Journal Supplement Series, 180(2), 330-376. doi:10.1088/0067-0049/180/2/330 es_ES
dc.description.references Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5 es_ES
dc.description.references Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031 es_ES
dc.description.references Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659 es_ES
dc.description.references Goodman, M. W., & Witten, E. (1985). Detectability of certain dark-matter candidates. Physical Review D, 31(12), 3059-3063. doi:10.1103/physrevd.31.3059 es_ES
dc.description.references Bolte, W. J., Collar, J. I., Crisler, M., Hall, J., Holmgren, D., Nakazawa, D., … Vieira, J. D. (2007). Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 577(3), 569-573. doi:10.1016/j.nima.2007.04.149 es_ES
dc.description.references Behnke, E., Collar, J. I., Cooper, P. S., Crum, K., Crisler, M., Hu, M., … Tschirhart, R. (2008). Spin-Dependent WIMP Limits from a Bubble Chamber. Science, 319(5865), 933-936. doi:10.1126/science.1149999 es_ES
dc.description.references Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2011). Improved Limits on Spin-Dependent WIMP-Proton Interactions from a Two LiterCF3IBubble Chamber. Physical Review Letters, 106(2). doi:10.1103/physrevlett.106.021303 es_ES
dc.description.references Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001 es_ES
dc.description.references Archambault, S., Aubin, F., Auger, M., Behnke, E., Beltran, B., Clark, K., … Zacek, V. (2009). Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO. Physics Letters B, 682(2), 185-192. doi:10.1016/j.physletb.2009.11.019 es_ES
dc.description.references Archambault, S., Behnke, E., Bhattacharjee, P., Bhattacharya, S., Dai, X., Das, M., … Zacek, V. (2012). Constraints on low-mass WIMP interactions on 19F from PICASSO. Physics Letters B, 711(2), 153-161. doi:10.1016/j.physletb.2012.03.078 es_ES
dc.description.references Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013 es_ES
dc.description.references Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302 es_ES
dc.description.references Duncan, F., Noble, A. J., & Sinclair, D. (2010). The Construction and Anticipated Science of SNOLAB. Annual Review of Nuclear and Particle Science, 60(1), 163-180. doi:10.1146/annurev.nucl.012809.104513 es_ES
dc.description.references Glaser, D. A., & Rahm, D. C. (1955). Characteristics of Bubble Chambers. Physical Review, 97(2), 474-479. doi:10.1103/physrev.97.474 es_ES
dc.description.references Seitz, F. (1958). On the Theory of the Bubble Chamber. Physics of Fluids, 1(1), 2. doi:10.1063/1.1724333 es_ES
dc.description.references Collar, J. I. (2013). Applications of anY88/BePhotoneutron Calibration Source to Dark Matter and Neutrino Experiments. Physical Review Letters, 110(21). doi:10.1103/physrevlett.110.211101 es_ES
dc.description.references Behnke, E., Benjamin, T., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2013). Direct measurement of the bubble-nucleation energy threshold in aCF3Ibubble chamber. Physical Review D, 88(2). doi:10.1103/physrevd.88.021101 es_ES
dc.description.references Archambault, S., Aubin, F., Auger, M., Beleshi, M., Behnke, E., … Behnke, J. (2011). New insights into particle detection with superheated liquids. New Journal of Physics, 13(4), 043006. doi:10.1088/1367-2630/13/4/043006 es_ES
dc.description.references Wilson, W. B., Perry, R. T., Charlton, W. S., Parish, T. A., & Shores, E. F. (2005). SOURCES: a code for calculating (α,n), spontaneous fission, and delayed neutron sources and spectra. Radiation Protection Dosimetry, 115(1-4), 117-121. doi:10.1093/rpd/nci260 es_ES
dc.description.references Mei, D.-M., & Hime, A. (2006). Muon-induced background study for underground laboratories. Physical Review D, 73(5). doi:10.1103/physrevd.73.053004 es_ES
dc.description.references Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., … Biller, S. D. (2009). Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D, 80(1). doi:10.1103/physrevd.80.012001 es_ES
dc.description.references Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8 es_ES
dc.description.references Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., … Chytracek, R. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270-278. doi:10.1109/tns.2006.869826 es_ES
dc.description.references Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017 es_ES
dc.description.references Yellin, S. (2002). Finding an upper limit in the presence of an unknown background. Physical Review D, 66(3). doi:10.1103/physrevd.66.032005 es_ES
dc.description.references Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3 es_ES
dc.description.references Fitzpatrick, A. L., & Zurek, K. M. (2010). Dark moments and the DAMA-CoGeNT puzzle. Physical Review D, 82(7). doi:10.1103/physrevd.82.075004 es_ES
dc.description.references Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004 es_ES
dc.description.references Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501 es_ES
dc.description.references Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521 es_ES
dc.description.references Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057 es_ES
dc.description.references Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Bedikian, S., … Bradley, A. (2014). First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility. Physical Review Letters, 112(9). doi:10.1103/physrevlett.112.091303 es_ES
dc.description.references Aprile, E., Alfonsi, M., Arisaka, K., Arneodo, F., Balan, C., Baudis, L., … Bokeloh, K. (2012). Dark Matter Results from 225 Live Days of XENON100 Data. Physical Review Letters, 109(18). doi:10.1103/physrevlett.109.181301 es_ES
dc.description.references Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., … Bowles, M. A. (2015). Improved WIMP-search reach of the CDMS II germanium data. Physical Review D, 92(7). doi:10.1103/physrevd.92.072003 es_ES
dc.description.references Aprile, E., Alfonsi, M., Arisaka, K., Arneodo, F., Balan, C., Baudis, L., … Bokeloh, K. (2013). Limits on Spin-Dependent WIMP-Nucleon Cross Sections from 225 Live Days of XENON100 Data. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.021301 es_ES
dc.description.references Aartsen, M. G., Abbasi, R., Abdou, Y., Ackermann, M., Adams, J., Aguilar, J. A., … Bai, X. (2013). Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector. Physical Review Letters, 110(13). doi:10.1103/physrevlett.110.131302 es_ES
dc.description.references Tanaka, T., Abe, K., Hayato, Y., Iida, T., Kameda, J., Koshio, Y., … Nakahata, M. (2011). AN INDIRECT SEARCH FOR WEAKLY INTERACTING MASSIVE PARTICLES IN THE SUN USING 3109.6 DAYS OF UPWARD-GOING MUONS IN SUPER-KAMIOKANDE. The Astrophysical Journal, 742(2), 78. doi:10.1088/0004-637x/742/2/78 es_ES
dc.description.references Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301 es_ES
dc.description.references Khachatryan, V., Sirunyan, A. M., Tumasyan, A., Adam, W., Bergauer, T., Dragicevic, M., … Frühwirth, R. (2015). Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at $$\sqrt{s} = 8$$ s = 8 $$\,{\mathrm{TeV}}\,$$ TeV. The European Physical Journal C, 75(5). doi:10.1140/epjc/s10052-015-3451-4 es_ES
dc.description.references First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. (2013). Journal of Cosmology and Astroparticle Physics, 2013(11), 032-032. doi:10.1088/1475-7516/2013/11/032 es_ES
dc.description.references Demidov, S., & Suvorova, O. (2010). Annihilation of NMSSM neutralinos in the Sun and neutrino telescope limits. Journal of Cosmology and Astroparticle Physics, 2010(06), 018-018. doi:10.1088/1475-7516/2010/06/018 es_ES
dc.description.references Avrorin, A. D., Avrorin, A. V., Aynutdinov, V. M., Bannasch, R., Belolaptikov, I. A., Bogorodsky, D. Y., … Demidov, S. V. (2015). Search for neutrino emission from relic dark matter in the sun with the Baikal NT200 detector. Astroparticle Physics, 62, 12-20. doi:10.1016/j.astropartphys.2014.07.006 es_ES
dc.description.references Busoni, G., De Simone, A., Morgante, E., & Riotto, A. (2014). On the validity of the effective field theory for dark matter searches at the LHC. Physics Letters B, 728, 412-421. doi:10.1016/j.physletb.2013.11.069 es_ES
dc.description.references Buchmueller, O., Dolan, M. J., & McCabe, C. (2014). Beyond effective field theory for dark matter searches at the LHC. Journal of High Energy Physics, 2014(1). doi:10.1007/jhep01(2014)025 es_ES
dc.description.references Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., … AbouZeid, O. S. (2015). Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $$\sqrt{s}=8~$$ s = 8 TeV with the ATLAS detector. The European Physical Journal C, 75(7). doi:10.1140/epjc/s10052-015-3517-3 es_ES
dc.description.references Aad, G., Abbott, B., Abdallah, J., Abdel Khalek, S., Abdinov, O., … AbouZeid, O. S. (2015). Search for dark matter in events with heavy quarks and missing transverse momentum in $$pp$$ p p collisions with the ATLAS detector. The European Physical Journal C, 75(2). doi:10.1140/epjc/s10052-015-3306-z es_ES
dc.description.references Roszkowski, L., Austri, R. R. de, & Trotta, R. (2007). Implications for the Constrained MSSM from a new prediction forb→sγ. Journal of High Energy Physics, 2007(07), 075-075. doi:10.1088/1126-6708/2007/07/075 es_ES
dc.description.references Bernabei, R., Belli, P., Cappella, F., Caracciolo, V., Castellano, S., Cerulli, R., … Ye, Z. P. (2013). Final model independent result of DAMA/LIBRA–phase1. The European Physical Journal C, 73(12). doi:10.1140/epjc/s10052-013-2648-7 es_ES
dc.description.references Chang, S., Weiner, N., & Yavin, I. (2010). Magnetic inelastic dark matter. Physical Review D, 82(12). doi:10.1103/physrevd.82.125011 es_ES
dc.description.references Barello, G., Chang, S., & Newby, C. A. (2014). A model independent approach to inelastic dark matter scattering. Physical Review D, 90(9). doi:10.1103/physrevd.90.094027 es_ES
dc.description.references Kim, S. C., Bhang, H., Choi, J. H., Kang, W. G., Kim, B. H., Kim, H. J., … Yue, Q. (2012). New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors. Physical Review Letters, 108(18). doi:10.1103/physrevlett.108.181301 es_ES
dc.description.references Collar, J. I. (2013). Quenching and channeling of nuclear recoils in NaI(Tl): Implications for dark-matter searches. Physical Review C, 88(3). doi:10.1103/physrevc.88.035806 es_ES
dc.description.references Bernabei, R., Belli, P., Montecchia, F., Nozzoli, F., Cappella, F., Incicchitti, A., … Zhang, Y. J. (2007). Possible implications of the channeling effect in NaI(Tl) crystals. The European Physical Journal C, 53(2), 205-213. doi:10.1140/epjc/s10052-007-0479-0 es_ES
dc.description.references Bozorgnia, N., Gelmini, G. B., & Gondolo, P. (2010). Channeling in direct dark matter detection I: channeling fraction in NaI (Tl) crystals. Journal of Cosmology and Astroparticle Physics, 2010(11), 019-019. doi:10.1088/1475-7516/2010/11/019 es_ES
dc.description.references BERNABEI, R., BELLI, P., d’ ANGELO, S., DI MARCO, A., MONTECCHIA, F., CAPPELLA, F., … YE, Z. P. (2013). DARK MATTER INVESTIGATION BY DAMA AT GRAN SASSO. International Journal of Modern Physics A, 28(16), 1330022. doi:10.1142/s0217751x13300226 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem