- -

Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods

Show full item record

Valbuena, R.; Maltamo, M.; Packalen, P. (2016). Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods. Revista de Teledetección. (Special Issue):15-25. doi:10.4995/raet.2016.4029.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80394

Files in this item

Item Metadata

Title: Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods
Secondary Title: Clasificación de etapas de desarrollo forestal a partir de datos de vuelos lidar nacionales de baja densidad: comparación de métodos de aprendizaje automático
Author:
Issued date:
Abstract:
[EN] The area-based method has become a widespread approach in airborne laser scanning (ALS), being mainly employed for the estimation of continuous variables describing forest attributes: biomass, volume, density, etc. ...[+]


[ES] Los métodos de estimación por áreas son ya habituales para el uso de escaneo láser aerotransportado (ALS) en la predicción de atributos forestales descritos por variables continuas: biomasa, volumen, densidad, etc. ...[+]
Subjects: Airborne laser scanning , Discriminant analysis , Maximum likelihood , Minimum volume ellipsoid , Naive bayes , Support vector machine , Artificial neural networks , Random forests , Nearest neighbour , Escaneo láser aerotransportado , Análisis discriminante , Máxima verosimilitud , Elipsoide de volumen mínimo , Bayesiano ingenuo , Máquinas de vector soporte , Redes neuronales artificiales , Selvas aleatorias , Vecino más próximo , Clases naturales de edad
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2016.4029
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/raet.2016.4029
Description: Revista oficial de la Asociación Española de Teledetección
Thanks:
This research was funded by SMK. Special thanks to Juho Heikkilä and Jussi Lappalainen (SMK), Heli Laaksonen (NLS), and Aki Suvanto (Blom Kartta Oy) for their support at different stages of this study, including the delivery ...[+]
Type: Artículo

Location


 

References

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183 [+]
Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Falkowski, M. J., Hudak, A. T., Crookston, N. L., Gessler, P. E., Uebler, E. H., & Smith, A. M. S. (2010). Landscape-scale parameterization of a tree-level forest growth model: ak-nearest neighbor imputation approach incorporating LiDAR data. Canadian Journal of Forest Research, 40(2), 184-199. doi:10.1139/x09-183

Foody, G.M., Campbell, N.A., Trodd, N.M., Wood, T.F. 1992. Derivation and applications of probabilistic measures of class membership from the maximumlikelihood classification. Photogrammetric Engineering & Remote Sensing, 58(9), 1335-1341.

García, M., Ria-o, D., Chuvieco, E., Salas, J., Danson, F.M. 2011. Multispectral and LIDAR Data Fusion for Fuel Type Mapping Using Support Vector Machine and Decision Rules. Remote Sensing of Hastie, T., Tibshirani, R., Friedman, J.H. 2009. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. New York: Springer

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5), 2232-2245. doi:10.1016/j.rse.2007.10.009

Kilkki, P., Päivinen, R. 1987. Reference sample plots to combine field measurements and satellite data in forest inventories. University of Helsinki, Department of Forest Mensuration and Management, Research Notes, 19, 209-215.

Korpela, I., Ørka, H., Maltamo, M., Tokola, T., & Hyyppä, J. (2010). Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44(2). doi:10.14214/sf.156

Korpela, I., Ørka, H., Maltamo, M., Tokola, T., & Hyyppä, J. (2010). Tree species classification using airborne LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44(2). doi:10.14214/sf.156

Liaw, A., Wiener, M. 2002. Classification and Regression by Random Forest. R News, 2(3), 18-22.

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. doi:10.1016/s0034-4257(01)00290-5

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. doi:10.1016/s0034-4257(01)00290-5

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. doi:10.1016/s0034-4257(01)00290-5

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. doi:10.1016/s0034-4257(01)00290-5

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80(1), 88-99. doi:10.1016/s0034-4257(01)00290-5

McGaughey, R.J. 2012. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. Version 3.10. Pacific Northwest Research Station. Seattle, WA: USDA Forest Service.

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Reese, H., Nyström, M., Nordkvist, K., & Olsson, H. (2014). Combining airborne laser scanning data and optical satellite data for classification of alpine vegetation. International Journal of Applied Earth Observation and Geoinformation, 27, 81-90. doi:10.1016/j.jag.2013.05.003

Rousseeuw, P. (1985). Multivariate Estimation with High Breakdown Point. Mathematical Statistics and Applications, 283-297. doi:10.1007/978-94-009-5438-0_20

Rousseeuw, P. (1985). Multivariate Estimation with High Breakdown Point. Mathematical Statistics and Applications, 283-297. doi:10.1007/978-94-009-5438-0_20

Rousseeuw, P. (1985). Multivariate Estimation with High Breakdown Point. Mathematical Statistics and Applications, 283-297. doi:10.1007/978-94-009-5438-0_20

Tomppo, E. 1993. National Forest Inventory of Finland. In: Nyyssönen, A. (ed.). Proceedings of FAO/ECE meeting of experts on global forest resources assessment, Kotka, Finland. The Finnish Forest Research Institute, Research Papers, 469, 204-205.

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Vauhkonen, J., Korpela, I., Maltamo, M., & Tokola, T. (2010). Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sensing of Environment, 114(6), 1263-1276. doi:10.1016/j.rse.2010.01.016

Zhang, Z., Liu, X., Peterson, J., & Wright, W. (2011). Cool temperate rainforest and adjacent forests classification using airborne LiDAR data. Area, 43(4), 438-448. doi:10.1111/j.1475-4762.2011.01035.x

Zhang, Z., Liu, X., Peterson, J., & Wright, W. (2011). Cool temperate rainforest and adjacent forests classification using airborne LiDAR data. Area, 43(4), 438-448. doi:10.1111/j.1475-4762.2011.01035.x

Zhang, Z., Liu, X., Peterson, J., & Wright, W. (2011). Cool temperate rainforest and adjacent forests classification using airborne LiDAR data. Area, 43(4), 438-448. doi:10.1111/j.1475-4762.2011.01035.x

[-]

This item appears in the following Collection(s)

Show full item record