Mostrar el registro sencillo del ítem
dc.contributor.author | Barrantes, Walter | es_ES |
dc.contributor.author | Fernández Del Carmen, María Asunción | es_ES |
dc.contributor.author | Lopez-Casado, Gloria | es_ES |
dc.contributor.author | González-Sánchez, María Ángeles | es_ES |
dc.contributor.author | Fernandez-Munoz, Rafael | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.contributor.author | Monforte Gilabert, Antonio José | es_ES |
dc.date.accessioned | 2017-05-03T10:48:38Z | |
dc.date.available | 2017-05-03T10:48:38Z | |
dc.date.issued | 2014-12 | |
dc.identifier.issn | 1380-3743 | |
dc.identifier.uri | http://hdl.handle.net/10251/80397 | |
dc.description.abstract | The Solanum pimpinellifolium L. accession TO-937 is resistant to pests due to the presence of type IV glandular trichomes and also has the potential to increase fruit quality traits in tomato cultivars. This accession was selected to develop a genomic library of introgression lines (IL) in the genetic background of tomato cultivar "Moneymaker." In order to increase the accuracy and speed of the IL development process, high-throughput single-nucleotide polymorphism (SNP) genotyping steps were performed in early backcross generations. Five to seven generations were needed to complete the final set of 53 ILs that were characterized with the 8K SNP SOLCAP Infinium array, which demonstrated that the introgressions present in the IL set covered 94 % of the donor genome and that each IL contained an average of 4.25 % (25 Mb) of the donor genome, defining 71 bins of about 10 Mb on average. Additionally, 37 previously undetected, unwanted introgressions were also detected, and most of them very small (< 2 Mb), probably due to double recombination events among the markers used during IL development. Compared to other IL collections recently characterized with high-throughput SNP technologies, the current IL collection contains a significantly lower number of smaller-sized, non-selected introgressions. The combination of several steps of high-throughput genotyping at early generations and the relatively large population size allowed us to construct a collection of ILs with an extraordinary genetic background isogenicity in a relatively short period of time. | es_ES |
dc.description.sponsorship | The authors wish to thank S. Casal and J. Ano and the technical staff at the greenhouse of IBMCP-UPV for their technical assistance. This work was funded in part by Grants AGL2012-40130-C02-02 from the MICINN, and co-funded by FEDER to AJM and P10-AGR-6784 by the Junta de Andalucia to RF-M. WB was supported by a fellowship granted by the Universidad de Costa Rica and CSIC-Spain by way of a collaboration agreement between CSIC/UCR. GL-C was supported by a JAEDoc contract by CSIC co-funded by the European Social Fund (ESF). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Molecular Breeding | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | High-resolution melting | es_ES |
dc.subject | SNP | es_ES |
dc.subject | QTL | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Germplasm | es_ES |
dc.title | Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11032-014-0141-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2012-40130-C02-02/ES/DESCIFRANDO LA BASE GENETICA DE LA MORFOLOGIA DEL FRUTO Y LA DOMESTICACION DE MELON/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Andalucía//P10-AGR-6784/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Barrantes, W.; Fernández Del Carmen, MA.; Lopez-Casado, G.; González-Sánchez, MÁ.; Fernandez-Munoz, R.; Granell Richart, A.; Monforte Gilabert, AJ. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding. 34(4):1817-1831. https://doi.org/10.1007/s11032-014-0141-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11032-014-0141-0 | es_ES |
dc.description.upvformatpinicio | 1817 | es_ES |
dc.description.upvformatpfin | 1831 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 282141 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Junta de Andalucía | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universidad de Costa Rica | es_ES |
dc.description.references | Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychusurticae) by acylsucroses of wild tomato (Solanumpimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47 | es_ES |
dc.description.references | Alexander L, Lincoln RE, Wright A (1942) A survey of the genus Lycopersicon for resistance to the important tomato disease occurring in Ohio and Indiana. Plant Dis Rep Suppl 136:51–85 | es_ES |
dc.description.references | Ashrafi H, Kinkade MP, Merk H, Foolad MR (2012) Identification of novel QTLs for increased lycopene content and other fruit quality traits in a tomato RIL population. Mol Breed 30:549–567. doi: 10.1007/s11032-011-9643-1 | es_ES |
dc.description.references | Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877 | es_ES |
dc.description.references | Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1997) Advanced backcross QTL analysis of tomato. II Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and Lycopersicon pimpinellifolium. Theor Appl Genet 97:170–180 | es_ES |
dc.description.references | Blair MW, Izquierdo P, Astidillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275. doi: 10.3389/fpls.2013.00275 | es_ES |
dc.description.references | Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7(10):e48198. doi: 10.1371/journal.pone.0048198 | es_ES |
dc.description.references | Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494 | es_ES |
dc.description.references | Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivates tomato. Genome 48:685–697 | es_ES |
dc.description.references | Capel C, Salinas M, Ruiz-Rubio C, Hernández-Gras F, Lima V, Valpuesta V, Fernández del Carmen A, Rambla JL, Medina A, Fernández-Muñoz R, Boronat A, Botella MA, Granell A, Angosto T, Capel J, Lozano R (2011) A novel Solanum lycopersicum × S. pimpinellifolium genetic linkage map based on a RIL population displaying locations of QTL for fruit quality traits. In: XVII Eucarpia meeting on tomato genetics and breeding, Abstracts Book, P2-1, Fuengirola (Málaga), Spain, p 45 | es_ES |
dc.description.references | Chagué V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677 | es_ES |
dc.description.references | Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicum esculentum). Theor Appl Genet 100:232–241 | es_ES |
dc.description.references | Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for the blight resistance in tomato. J Hortic Sci Biotechnol 77(3):281–286 | es_ES |
dc.description.references | Concibido VC, Vallee BL, Mclaird P (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582 | es_ES |
dc.description.references | Cuartero J, Nuez F, Díaz A (1984) Catalog of collections of Lycopersicon and L. pennellii from northwest of Perú. Tomato Genet Coop Rep 34:43–46 | es_ES |
dc.description.references | Dolangar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202 | es_ES |
dc.description.references | Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15 | es_ES |
dc.description.references | Eduardo I, Arùs P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148 | es_ES |
dc.description.references | Eichten SR, Foerster JM, de Leon N, Kai Y, Yeh CT, Liu S, Jeddeloh JA, Schnable PS, Kaeppler SM, Springer NM (2011) B73-Mo17 near-isogenic lines demonstrate dispersal structural variation in maize. Plant Physiol 156:1679–1690 | es_ES |
dc.description.references | Ellis PR, Maxon-Smith JW (1971) Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20:93–101 | es_ES |
dc.description.references | Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the solute-solids yield of tomato hybrids. Theor Appl Genet 88:891–897 | es_ES |
dc.description.references | Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162 | es_ES |
dc.description.references | Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817 | es_ES |
dc.description.references | Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific & Technical, Essex | es_ES |
dc.description.references | Fernandez-del-Carmen A, Abad J, Fernández-Muñoz R, Granell A, Monforte AJ (2011) Applications of the SolCap Illumina SNP array in tomato genetics. In: 8th Solanaceae and 2nd Cucurbitaceae genome joint conference, Kobe, Japan, 28 Nov–2 Dec 2011 | es_ES |
dc.description.references | Fernández-Muñoz R, Domínguez E, Cuartero J (2000) A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium (Jusl.) Mill. its genetics as affected by interplot interference. Euphytica 111:169–173 | es_ES |
dc.description.references | Fernández-Muñoz R, Salinas M, Alvarez M, Cuartero J (2003) Inheritance of resistance to the two-spotted mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J Am Soc Hortic Sci 128:188–195 | es_ES |
dc.description.references | Finkers R, Heusden AW, Dekens-Meijer F, Kan JA, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 112:1360–1373 | es_ES |
dc.description.references | Foolad MR (2005) Breeding for a biotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth, New York, pp 613–684 | es_ES |
dc.description.references | Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:115–240 | es_ES |
dc.description.references | Francis DM, Kabelka E, Bell J, Franchino B, St. Clair D (2001) Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis 85:1171–1176 | es_ES |
dc.description.references | Frary A, Nesbitt TC, Grandillo S (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88 | es_ES |
dc.description.references | Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trail locus for tomato sugar content to 484 pb within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723 | es_ES |
dc.description.references | Fulton TM, Nelson JC, Tanksley SD (1997) Introgressión and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902 | es_ES |
dc.description.references | Grandillo S, Chetelat R, Knapp S, Spooner D, Peralta I, Cammareri M, Perez O, Termolino P, Tripodi P, Chiusano Ml, Ercolano MR, Frusciante L, Monti L, Pignone D (2011) Solanum sect. Lycopersicon. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol 5., VegetablesSpringer, Netherlands, pp 129–215 | es_ES |
dc.description.references | Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406 | es_ES |
dc.description.references | Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245 | es_ES |
dc.description.references | Ignatova SI, Gorshkova NS, Tereshonkova TA (2000) Resistance of tomato F1 hybrids to grey mold. Acta Physiol Plant 22:326–328 | es_ES |
dc.description.references | Jeuken MJW, Lindhout P (2004) The development of lettuce backcrossing inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germoplasm. Theor Appl Genet 109:394–401 | es_ES |
dc.description.references | Keurentjes BJ, Bentsink L, Blanco CA, Hanhart CJ, De Vries HB, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905 | es_ES |
dc.description.references | Kindale PM, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175 | es_ES |
dc.description.references | Korff MV, Wang H, Leon J, Pillen K (2004) Development of candidate introgression using exotic barley accession (Hordeum vulgare ssp. Spontaneum) as donor. Theor Appl Genet 109:1736–1745 | es_ES |
dc.description.references | Koumproglou R, Wilkes TW, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ (2002) STAIRS: a new genetic resource for functional genomics studies of Arabidopsis. Plant J 31(3):355–364 | es_ES |
dc.description.references | Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878 | es_ES |
dc.description.references | Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott JW, Gonzalo MJ, Francis D, Yang W, van der Knaap E, Baldo AM, Smith-White B, Mueller LA, Prince JP, Blanchard NE, Storey DB, Stevens MR, Robbins MD, Wang JF, Liedl BE, O’Connell MA, Stommel JR, Aoki K, Iijima Y, Slade AJ, Hurst SR, Loeffler D, Steine MN, Vafeados D, McGuire C, Freeman C, Amen A, Goodstal J, Facciotti D, Van Eck J, Causse M (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5., VegetablesSpringer, Berlin, pp 1–96 | es_ES |
dc.description.references | Laterrot H (1996) Twenty-one near isogenic lines in Moneymaker type with different genes for disease resistances. Tomato Genet Coop Rep 46:34 | es_ES |
dc.description.references | Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SIERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204 | es_ES |
dc.description.references | Lima-Silva V, Rosado A, Amorin-Silva V, Muñoz-Merida A, Pons C, Bombarely A, Trelles O, Fernandez-Muñoz R, Granell A, Valpuerta V, Botella MA (2012) Genetic on genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187 | es_ES |
dc.description.references | Liu K, Muse SV (2005) PowerMarker: on integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129 | es_ES |
dc.description.references | Liu JP, van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underling the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:813302–813306 | es_ES |
dc.description.references | Liu S, Zhou R, Dong Y (2006) Development, utilization of introgression lines using synthetic wheat as donor. Theor Appl Genet 114:1071–1080 | es_ES |
dc.description.references | MacNeil BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. J Plant Pathol 6:48–53 | es_ES |
dc.description.references | Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448 | es_ES |
dc.description.references | Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2 F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52 | es_ES |
dc.description.references | Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813 | es_ES |
dc.description.references | Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479 | es_ES |
dc.description.references | Monforte AJ, Asins AJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772 | es_ES |
dc.description.references | Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of set of allelic QTL_NILs for chromosome 4 of tomato deductions about natural variation and implications for germoplasm utilization. Theor Appl Genet 102:572–590 | es_ES |
dc.description.references | Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J Mol Evol 19(2):153–170 | es_ES |
dc.description.references | Pea G, Aung HH, Frascaroli E, Landi P, Pé ME (2013) Extensive genomic characterization of set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). BMC Genomics 14:61 | es_ES |
dc.description.references | Pestsova EG, Borner A, Roder MS (2006) Development and QTL assessment of Triticuma estivum–Aegilops tauuschii introgression lines. Theor Appl Genet 112:634–647 | es_ES |
dc.description.references | Powell A, Nguyen C, Hill T, Cheng KL, Figueroa R, Aktos H, Ashrafi H, Pons C, Fernandez-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C, Liu Y, Chetelat R, Granell A, Deynze A, Giovannoni J, Bennett A (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715 | es_ES |
dc.description.references | Rambla JL, Tikunov YM, Monforte AJ, Bovy AG, Granell A (2014) The expanded tomato fruit volatile landscape. J Exp Bot. doi: 10.1093/jxb/eru128 | es_ES |
dc.description.references | Ramsay LD, Jennings DE, Kearsey MJ (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleraceae for the precision mapping of quantitative trait loci. Genome 39:558–567 | es_ES |
dc.description.references | Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96 | es_ES |
dc.description.references | Rick CM (1970) The tomato Ge locus linkage relations and geographic distribution of alleles. Genetics 67:75–85 | es_ES |
dc.description.references | Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Linnean Soc Symposium Series No. 7, Academic Press, New York, pp 667–678 | es_ES |
dc.description.references | Rick CM (1986) Genetic resources in Lycopersicon. In: Nevins DJ, Jones RA (eds) Tomato biotechnology. Alan R. Liss, New York, pp 17–26 | es_ES |
dc.description.references | Rodriguez GR, Munoz S, Anderson C, Sim SC, Michael A, Causse M, Gardener M, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285 | es_ES |
dc.description.references | Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408 | es_ES |
dc.description.references | Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92 | es_ES |
dc.description.references | Sato K, Close T, Bhat P, Muñoz-Amatrian M, Muehlbauer GJ (2011) Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley. Plant Cell Physiol 52(5):728–737 | es_ES |
dc.description.references | Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454 | es_ES |
dc.description.references | Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 1(3):187–196 | es_ES |
dc.description.references | Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432 | es_ES |
dc.description.references | Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7(7):e40563. doi: 10.1371/journal.pone.0040563 | es_ES |
dc.description.references | Slimestad S, Verheul M (2009) Review of flavonoids and other phenolics from fruit of different tomato (Lycopersicon esculentum Mill) cultivars. J Sci Food Agric 89:1255–1270 | es_ES |
dc.description.references | Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes (Solanum L. Section Lycopersicon (Mill. Wattst). Taxon 54:43–61 | es_ES |
dc.description.references | Steinhauser MC, Steinhauser D, Gibon Y, Bolger M, Arrivault S, Usadel B, Zamir D, Fernie AR, Stitt M (2011) Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum × Solanum pennellii introgression line population. Plant Physiol 157(3):998–1014 | es_ES |
dc.description.references | Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basic for improvement. Chapman and Hall, London, pp 35–109 | es_ES |
dc.description.references | Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 | es_ES |
dc.description.references | Tanksley SD, McCouch SR (1997) Seed banks molecular maps: unlocking genetic from the wild. Science 277:1063–1066 | es_ES |
dc.description.references | Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Gent 92:191–203 | es_ES |
dc.description.references | Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224 | es_ES |
dc.description.references | Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580 | es_ES |
dc.description.references | Tieman D, Bliss P, Mclatyre LM, Blondon-ubeda A, Bies D, Odabasi AZ, Rodriguez GR, van der Knaap E, Taylor MG, Goulet C, Mageroy MH, Snyder DJ, Colguhoun T, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039 | es_ES |
dc.description.references | Villalta I, Reina-Sánchez A, Bolarín MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880 | es_ES |
dc.description.references | Wehrhahn C, Allard W (1965) The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119 | es_ES |
dc.description.references | Xiao J, Li J, Grandillo S, Ahn S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909 | es_ES |
dc.description.references | Xu J, Zhao Q, Du P, Xu Ch, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). Genomics 11:2–14 | es_ES |
dc.description.references | Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fong L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu Ch, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111 | es_ES |
dc.description.references | Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989 | es_ES |