- -

Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Barrantes, Walter es_ES
dc.contributor.author Fernández Del Carmen, María Asunción es_ES
dc.contributor.author Lopez-Casado, Gloria es_ES
dc.contributor.author González-Sánchez, María Ángeles es_ES
dc.contributor.author Fernandez-Munoz, Rafael es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.date.accessioned 2017-05-03T10:48:38Z
dc.date.available 2017-05-03T10:48:38Z
dc.date.issued 2014-12
dc.identifier.issn 1380-3743
dc.identifier.uri http://hdl.handle.net/10251/80397
dc.description.abstract The Solanum pimpinellifolium L. accession TO-937 is resistant to pests due to the presence of type IV glandular trichomes and also has the potential to increase fruit quality traits in tomato cultivars. This accession was selected to develop a genomic library of introgression lines (IL) in the genetic background of tomato cultivar "Moneymaker." In order to increase the accuracy and speed of the IL development process, high-throughput single-nucleotide polymorphism (SNP) genotyping steps were performed in early backcross generations. Five to seven generations were needed to complete the final set of 53 ILs that were characterized with the 8K SNP SOLCAP Infinium array, which demonstrated that the introgressions present in the IL set covered 94 % of the donor genome and that each IL contained an average of 4.25 % (25 Mb) of the donor genome, defining 71 bins of about 10 Mb on average. Additionally, 37 previously undetected, unwanted introgressions were also detected, and most of them very small (< 2 Mb), probably due to double recombination events among the markers used during IL development. Compared to other IL collections recently characterized with high-throughput SNP technologies, the current IL collection contains a significantly lower number of smaller-sized, non-selected introgressions. The combination of several steps of high-throughput genotyping at early generations and the relatively large population size allowed us to construct a collection of ILs with an extraordinary genetic background isogenicity in a relatively short period of time. es_ES
dc.description.sponsorship The authors wish to thank S. Casal and J. Ano and the technical staff at the greenhouse of IBMCP-UPV for their technical assistance. This work was funded in part by Grants AGL2012-40130-C02-02 from the MICINN, and co-funded by FEDER to AJM and P10-AGR-6784 by the Junta de Andalucia to RF-M. WB was supported by a fellowship granted by the Universidad de Costa Rica and CSIC-Spain by way of a collaboration agreement between CSIC/UCR. GL-C was supported by a JAEDoc contract by CSIC co-funded by the European Social Fund (ESF). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Molecular Breeding es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject High-resolution melting es_ES
dc.subject SNP es_ES
dc.subject QTL es_ES
dc.subject Tomato es_ES
dc.subject Germplasm es_ES
dc.title Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11032-014-0141-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40130-C02-02/ES/DESCIFRANDO LA BASE GENETICA DE LA MORFOLOGIA DEL FRUTO Y LA DOMESTICACION DE MELON/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P10-AGR-6784/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Barrantes, W.; Fernández Del Carmen, MA.; Lopez-Casado, G.; González-Sánchez, MÁ.; Fernandez-Munoz, R.; Granell Richart, A.; Monforte Gilabert, AJ. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding. 34(4):1817-1831. https://doi.org/10.1007/s11032-014-0141-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11032-014-0141-0 es_ES
dc.description.upvformatpinicio 1817 es_ES
dc.description.upvformatpfin 1831 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 282141 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad de Costa Rica es_ES
dc.description.references Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychusurticae) by acylsucroses of wild tomato (Solanumpimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47 es_ES
dc.description.references Alexander L, Lincoln RE, Wright A (1942) A survey of the genus Lycopersicon for resistance to the important tomato disease occurring in Ohio and Indiana. Plant Dis Rep Suppl 136:51–85 es_ES
dc.description.references Ashrafi H, Kinkade MP, Merk H, Foolad MR (2012) Identification of novel QTLs for increased lycopene content and other fruit quality traits in a tomato RIL population. Mol Breed 30:549–567. doi: 10.1007/s11032-011-9643-1 es_ES
dc.description.references Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877 es_ES
dc.description.references Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1997) Advanced backcross QTL analysis of tomato. II Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and Lycopersicon pimpinellifolium. Theor Appl Genet 97:170–180 es_ES
dc.description.references Blair MW, Izquierdo P, Astidillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275. doi: 10.3389/fpls.2013.00275 es_ES
dc.description.references Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7(10):e48198. doi: 10.1371/journal.pone.0048198 es_ES
dc.description.references Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494 es_ES
dc.description.references Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivates tomato. Genome 48:685–697 es_ES
dc.description.references Capel C, Salinas M, Ruiz-Rubio C, Hernández-Gras F, Lima V, Valpuesta V, Fernández del Carmen A, Rambla JL, Medina A, Fernández-Muñoz R, Boronat A, Botella MA, Granell A, Angosto T, Capel J, Lozano R (2011) A novel Solanum lycopersicum × S. pimpinellifolium genetic linkage map based on a RIL population displaying locations of QTL for fruit quality traits. In: XVII Eucarpia meeting on tomato genetics and breeding, Abstracts Book, P2-1, Fuengirola (Málaga), Spain, p 45 es_ES
dc.description.references Chagué V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677 es_ES
dc.description.references Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicum esculentum). Theor Appl Genet 100:232–241 es_ES
dc.description.references Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for the blight resistance in tomato. J Hortic Sci Biotechnol 77(3):281–286 es_ES
dc.description.references Concibido VC, Vallee BL, Mclaird P (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582 es_ES
dc.description.references Cuartero J, Nuez F, Díaz A (1984) Catalog of collections of Lycopersicon and L. pennellii from northwest of Perú. Tomato Genet Coop Rep 34:43–46 es_ES
dc.description.references Dolangar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202 es_ES
dc.description.references Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15 es_ES
dc.description.references Eduardo I, Arùs P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148 es_ES
dc.description.references Eichten SR, Foerster JM, de Leon N, Kai Y, Yeh CT, Liu S, Jeddeloh JA, Schnable PS, Kaeppler SM, Springer NM (2011) B73-Mo17 near-isogenic lines demonstrate dispersal structural variation in maize. Plant Physiol 156:1679–1690 es_ES
dc.description.references Ellis PR, Maxon-Smith JW (1971) Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20:93–101 es_ES
dc.description.references Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the solute-solids yield of tomato hybrids. Theor Appl Genet 88:891–897 es_ES
dc.description.references Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162 es_ES
dc.description.references Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817 es_ES
dc.description.references Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman Scientific & Technical, Essex es_ES
dc.description.references Fernandez-del-Carmen A, Abad J, Fernández-Muñoz R, Granell A, Monforte AJ (2011) Applications of the SolCap Illumina SNP array in tomato genetics. In: 8th Solanaceae and 2nd Cucurbitaceae genome joint conference, Kobe, Japan, 28 Nov–2 Dec 2011 es_ES
dc.description.references Fernández-Muñoz R, Domínguez E, Cuartero J (2000) A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium (Jusl.) Mill. its genetics as affected by interplot interference. Euphytica 111:169–173 es_ES
dc.description.references Fernández-Muñoz R, Salinas M, Alvarez M, Cuartero J (2003) Inheritance of resistance to the two-spotted mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill. J Am Soc Hortic Sci 128:188–195 es_ES
dc.description.references Finkers R, Heusden AW, Dekens-Meijer F, Kan JA, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 112:1360–1373 es_ES
dc.description.references Foolad MR (2005) Breeding for a biotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth, New York, pp 613–684 es_ES
dc.description.references Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:115–240 es_ES
dc.description.references Francis DM, Kabelka E, Bell J, Franchino B, St. Clair D (2001) Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis 85:1171–1176 es_ES
dc.description.references Frary A, Nesbitt TC, Grandillo S (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88 es_ES
dc.description.references Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trail locus for tomato sugar content to 484 pb within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723 es_ES
dc.description.references Fulton TM, Nelson JC, Tanksley SD (1997) Introgressión and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato, into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet 95:895–902 es_ES
dc.description.references Grandillo S, Chetelat R, Knapp S, Spooner D, Peralta I, Cammareri M, Perez O, Termolino P, Tripodi P, Chiusano Ml, Ercolano MR, Frusciante L, Monti L, Pignone D (2011) Solanum sect. Lycopersicon. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, vol 5., VegetablesSpringer, Netherlands, pp 129–215 es_ES
dc.description.references Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT (2003) Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem 49:396–406 es_ES
dc.description.references Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245 es_ES
dc.description.references Ignatova SI, Gorshkova NS, Tereshonkova TA (2000) Resistance of tomato F1 hybrids to grey mold. Acta Physiol Plant 22:326–328 es_ES
dc.description.references Jeuken MJW, Lindhout P (2004) The development of lettuce backcrossing inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germoplasm. Theor Appl Genet 109:394–401 es_ES
dc.description.references Keurentjes BJ, Bentsink L, Blanco CA, Hanhart CJ, De Vries HB, Effgen S, Vreugdenhil D, Koornneef M (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905 es_ES
dc.description.references Kindale PM, Foolad MR (2013) Validation and fine mapping of lyc12.1, a QTL for increased tomato fruit lycopene content. Theor Appl Genet 126:2163–2175 es_ES
dc.description.references Korff MV, Wang H, Leon J, Pillen K (2004) Development of candidate introgression using exotic barley accession (Hordeum vulgare ssp. Spontaneum) as donor. Theor Appl Genet 109:1736–1745 es_ES
dc.description.references Koumproglou R, Wilkes TW, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ (2002) STAIRS: a new genetic resource for functional genomics studies of Arabidopsis. Plant J 31(3):355–364 es_ES
dc.description.references Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878 es_ES
dc.description.references Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott JW, Gonzalo MJ, Francis D, Yang W, van der Knaap E, Baldo AM, Smith-White B, Mueller LA, Prince JP, Blanchard NE, Storey DB, Stevens MR, Robbins MD, Wang JF, Liedl BE, O’Connell MA, Stommel JR, Aoki K, Iijima Y, Slade AJ, Hurst SR, Loeffler D, Steine MN, Vafeados D, McGuire C, Freeman C, Amen A, Goodstal J, Facciotti D, Van Eck J, Causse M (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5., VegetablesSpringer, Berlin, pp 1–96 es_ES
dc.description.references Laterrot H (1996) Twenty-one near isogenic lines in Moneymaker type with different genes for disease resistances. Tomato Genet Coop Rep 46:34 es_ES
dc.description.references Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SIERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204 es_ES
dc.description.references Lima-Silva V, Rosado A, Amorin-Silva V, Muñoz-Merida A, Pons C, Bombarely A, Trelles O, Fernandez-Muñoz R, Granell A, Valpuerta V, Botella MA (2012) Genetic on genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187 es_ES
dc.description.references Liu K, Muse SV (2005) PowerMarker: on integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129 es_ES
dc.description.references Liu JP, van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underling the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:813302–813306 es_ES
dc.description.references Liu S, Zhou R, Dong Y (2006) Development, utilization of introgression lines using synthetic wheat as donor. Theor Appl Genet 114:1071–1080 es_ES
dc.description.references MacNeil BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. J Plant Pathol 6:48–53 es_ES
dc.description.references Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448 es_ES
dc.description.references Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2 F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52 es_ES
dc.description.references Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813 es_ES
dc.description.references Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479 es_ES
dc.description.references Monforte AJ, Asins AJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772 es_ES
dc.description.references Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of set of allelic QTL_NILs for chromosome 4 of tomato deductions about natural variation and implications for germoplasm utilization. Theor Appl Genet 102:572–590 es_ES
dc.description.references Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J Mol Evol 19(2):153–170 es_ES
dc.description.references Pea G, Aung HH, Frascaroli E, Landi P, Pé ME (2013) Extensive genomic characterization of set of near-isogenic lines for heterotic QTL in maize (Zea mays L.). BMC Genomics 14:61 es_ES
dc.description.references Pestsova EG, Borner A, Roder MS (2006) Development and QTL assessment of Triticuma estivum–Aegilops tauuschii introgression lines. Theor Appl Genet 112:634–647 es_ES
dc.description.references Powell A, Nguyen C, Hill T, Cheng KL, Figueroa R, Aktos H, Ashrafi H, Pons C, Fernandez-Muñoz R, Vicente A, Lopez-Baltazar J, Barry C, Liu Y, Chetelat R, Granell A, Deynze A, Giovannoni J, Bennett A (2012) Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715 es_ES
dc.description.references Rambla JL, Tikunov YM, Monforte AJ, Bovy AG, Granell A (2014) The expanded tomato fruit volatile landscape. J Exp Bot. doi: 10.1093/jxb/eru128 es_ES
dc.description.references Ramsay LD, Jennings DE, Kearsey MJ (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleraceae for the precision mapping of quantitative trait loci. Genome 39:558–567 es_ES
dc.description.references Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interaction. Genetics 53:85–96 es_ES
dc.description.references Rick CM (1970) The tomato Ge locus linkage relations and geographic distribution of alleles. Genetics 67:75–85 es_ES
dc.description.references Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Linnean Soc Symposium Series No. 7, Academic Press, New York, pp 667–678 es_ES
dc.description.references Rick CM (1986) Genetic resources in Lycopersicon. In: Nevins DJ, Jones RA (eds) Tomato biotechnology. Alan R. Liss, New York, pp 17–26 es_ES
dc.description.references Rodriguez GR, Munoz S, Anderson C, Sim SC, Michael A, Causse M, Gardener M, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275–285 es_ES
dc.description.references Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408 es_ES
dc.description.references Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92 es_ES
dc.description.references Sato K, Close T, Bhat P, Muñoz-Amatrian M, Muehlbauer GJ (2011) Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley. Plant Cell Physiol 52(5):728–737 es_ES
dc.description.references Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454 es_ES
dc.description.references Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 1(3):187–196 es_ES
dc.description.references Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432 es_ES
dc.description.references Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7(7):e40563. doi: 10.1371/journal.pone.0040563 es_ES
dc.description.references Slimestad S, Verheul M (2009) Review of flavonoids and other phenolics from fruit of different tomato (Lycopersicon esculentum Mill) cultivars. J Sci Food Agric 89:1255–1270 es_ES
dc.description.references Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes (Solanum L. Section Lycopersicon (Mill. Wattst). Taxon 54:43–61 es_ES
dc.description.references Steinhauser MC, Steinhauser D, Gibon Y, Bolger M, Arrivault S, Usadel B, Zamir D, Fernie AR, Stitt M (2011) Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum × Solanum pennellii introgression line population. Plant Physiol 157(3):998–1014 es_ES
dc.description.references Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basic for improvement. Chapman and Hall, London, pp 35–109 es_ES
dc.description.references Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 es_ES
dc.description.references Tanksley SD, McCouch SR (1997) Seed banks molecular maps: unlocking genetic from the wild. Science 277:1063–1066 es_ES
dc.description.references Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Gent 92:191–203 es_ES
dc.description.references Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224 es_ES
dc.description.references Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580 es_ES
dc.description.references Tieman D, Bliss P, Mclatyre LM, Blondon-ubeda A, Bies D, Odabasi AZ, Rodriguez GR, van der Knaap E, Taylor MG, Goulet C, Mageroy MH, Snyder DJ, Colguhoun T, Moskowitz H, Clark DG, Sims C, Bartoshuk L, Klee HJ (2012) The chemical interactions underlying tomato flavor preferences. Curr Biol 22:1035–1039 es_ES
dc.description.references Villalta I, Reina-Sánchez A, Bolarín MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880 es_ES
dc.description.references Wehrhahn C, Allard W (1965) The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat. Genetics 51:109–119 es_ES
dc.description.references Xiao J, Li J, Grandillo S, Ahn S, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909 es_ES
dc.description.references Xu J, Zhao Q, Du P, Xu Ch, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). Genomics 11:2–14 es_ES
dc.description.references Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fong L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu Ch, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111 es_ES
dc.description.references Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem