- -

Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rambla Nebot, Jose Luis es_ES
dc.contributor.author Medina, Aurora es_ES
dc.contributor.author Fernández Del Carmen, María Asunción es_ES
dc.contributor.author Barrantes, Walter es_ES
dc.contributor.author Grandillo, Silvana es_ES
dc.contributor.author Cammareri, Maria es_ES
dc.contributor.author López Casado, Gloria es_ES
dc.contributor.author Rodrigo Tarrega, Guillermo es_ES
dc.contributor.author Alonso, Arancha es_ES
dc.contributor.author Garcia-Martinez, S es_ES
dc.contributor.author Primo Millo, Jaime es_ES
dc.contributor.author Ruiz, JJ es_ES
dc.contributor.author Fernandez-Muñoz, R es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2017-05-04T09:46:11Z
dc.date.available 2017-05-04T09:46:11Z
dc.date.issued 2016-01
dc.identifier.issn 0022-0957
dc.identifier.uri http://hdl.handle.net/10251/80562
dc.description.abstract [EN] Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways. Quantitative trait locus (QTL) analysis, based on a genetic linkage map comprising 297 single nucleotide polymorphisms (SNPs), revealed 102 QTLs (75% not described previously) corresponding to 39 different VOCs. The SP alleles exerted a positive effect on most of the underlying apocarotenoid volatile QTLs-regarded as desirable for liking tomato-indicating that alleles inherited from SP are a valuable resource for flavor breeding. An introgression line (IL) population developed from the same parental genotypes provided 12 ILs carrying a single SP introgression and covering 85 VOC QTLs, which were characterized at three locations. The results showed that almost half of the QTLs previously identified in the RILs maintained their effect in an IL form, reinforcing the value of these QTLs for flavor/aroma breeding in cultivated tomato. es_ES
dc.description.sponsorship We thank Erika Moro for valuable help in volatile analysis of the ILs. WB was supported by a fellowship granted by the Universidad de Costa Rica and CSIC-Spain by way of a collaboration agreement between CSIC/UCR. Volatile profiling was performed in the Metabolomic facilities of the IBMCP, CSIC (Spain). This work was supported in part by the Spanish MINECO Project AGL2015-65246-R co-financed by EU FEDER, MINECO Project AGL2011-26957, and the Bilateral agreements of Scientific and Technological Cooperation between the Spanish National Research Council (CSIC) and the Italian National Research Council (CNR). Funding for this project was provided through TRADITOM. TRADITOM has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634561. Networking activities were supported by COST action Fruit Quality FA 1106. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fruit flavor es_ES
dc.subject introgression lines (ILs) es_ES
dc.subject quantitative trait loci (QTLs) es_ES
dc.subject recombinant inbred lines (RILs) es_ES
dc.subject Solanum habrochaites es_ES
dc.subject Solanum pimpinellifolium es_ES
dc.subject SolCap tomato SNP array es_ES
dc.subject tomato es_ES
dc.subject volatiles es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erw455
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-65246-R/ES/BASES GENETICAS DE LA COMPOSICION Y PROPIEDADES BIOFISICAS DE LA CUTICULA DEL FRUTO DE TOMATE: APROVECHAMIENTO DE LA VARIABILIDAD NATURAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-26957/ES/MEJORA DE LA CALIDAD EN TOMATE: ANALISIS GENETICO Y DE METABOLITOS DEL EFECTO DE LA INTRODUCCION DE RESISTENCIAS Y GENETICA DE ASOCIACION EN VARIEDADES ESPAÑOLAS E ITALIANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Rambla Nebot, JL.; Medina, A.; Fernández Del Carmen, MA.; Barrantes, W.; Grandillo, S.; Cammareri, M.; López Casado, G.... (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany. 68(3):429-442. https://doi.org/10.1093/jxb/erw455 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi. org/10.1093/jxb/erw455 es_ES
dc.description.upvformatpinicio 429 es_ES
dc.description.upvformatpfin 442 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 331614 es_ES
dc.identifier.eissn 1460-2431
dc.identifier.pmid 28040800 en_EN
dc.identifier.pmcid PMC5444475 en_EN
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2008). Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology, 47(1), 35-47. doi:10.1007/s10493-008-9192-4 es_ES
dc.description.references Abegaz, E. G., Tandon, K. S., Scott, J. W., Baldwin, E. A., & Shewfelt, R. L. (2004). Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology, 34(3), 227-235. doi:10.1016/j.postharvbio.2004.05.023 es_ES
dc.description.references Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.x es_ES
dc.description.references Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0 es_ES
dc.description.references Buttery, R. G., & Ling, L. C. (1993). Volatile Components of Tomato Fruit and Plant Parts. Bioactive Volatile Compounds from Plants, 23-34. doi:10.1021/bk-1993-0525.ch003 es_ES
dc.description.references Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4 es_ES
dc.description.references Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608 es_ES
dc.description.references Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25), 14863-14868. doi:10.1073/pnas.95.25.14863 es_ES
dc.description.references Fowlkes, E. B., & Mallows, C. L. (1983). A Method for Comparing Two Hierarchical Clusterings. Journal of the American Statistical Association, 78(383), 553. doi:10.2307/2288117 es_ES
dc.description.references Goulet, C., Kamiyoshihara, Y., Lam, N. B., Richard, T., Taylor, M. G., Tieman, D. M., & Klee, H. J. (2015). Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition. Molecular Plant, 8(1), 153-162. doi:10.1016/j.molp.2014.11.007 es_ES
dc.description.references Goulet, C., Mageroy, M. H., Lam, N. B., Floystad, A., Tieman, D. M., & Klee, H. J. (2012). Role of an esterase in flavor volatile variation within the tomato clade. Proceedings of the National Academy of Sciences, 109(46), 19009-19014. doi:10.1073/pnas.1216515109 es_ES
dc.description.references Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003 es_ES
dc.description.references Kochevenko, A., Araújo, W. L., Maloney, G. S., Tieman, D. M., Do, P. T., Taylor, M. G., … Fernie, A. R. (2012). Catabolism of Branched Chain Amino Acids Supports Respiration but Not Volatile Synthesis in Tomato Fruits. Molecular Plant, 5(2), 366-375. doi:10.1093/mp/ssr108 es_ES
dc.description.references Louveau, T., Leitao, C., Green, S., Hamiaux, C., van der Rest, B., Dechy-Cabaret, O., … Chervin, C. (2010). Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS Journal, 278(2), 390-400. doi:10.1111/j.1742-4658.2010.07962.x es_ES
dc.description.references Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.x es_ES
dc.description.references Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294 es_ES
dc.description.references Matsui, K., Ishii, M., Sasaki, M., Rabinowitch, H. D., & Ben-Oliel, G. (2007). Identification of an Allele Attributable to Formation of Cucumber-like Flavor in Wild Tomato Species (Solanum pennellii) That Was Inactivated during Domestication. Journal of Agricultural and Food Chemistry, 55(10), 4080-4086. doi:10.1021/jf063756b es_ES
dc.description.references MATSUI, K., MIYAHARA, C., WILKINSON, J., HIATT, B., KNAUF, V., & KAJIWARA, T. (2000). Fatty Acid Hydroperoxide Lyase in Tomato Fruits: Cloning and Properties of a Recombinant Enzyme Expressed inEscherichia coli. Bioscience, Biotechnology, and Biochemistry, 64(6), 1189-1196. doi:10.1271/bbb.64.1189 es_ES
dc.description.references Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/gen-43-5-803 es_ES
dc.description.references Orzaez, D., Medina, A., Torre, S., Fernández-Moreno, J. P., Rambla, J. L., Fernández-del-Carmen, A., … Granell, A. (2009). A Visual Reporter System for Virus-Induced Gene Silencing in Tomato Fruit Based on Anthocyanin Accumulation. Plant Physiology, 150(3), 1122-1134. doi:10.1104/pp.109.139006 es_ES
dc.description.references Rambla, J. L., Alfaro, C., Medina, A., Zarzo, M., Primo, J., & Granell, A. (2015). Tomato fruit volatile profiles are highly dependent on sample processing and capturing methods. Metabolomics, 11(6), 1708-1720. doi:10.1007/s11306-015-0824-5 es_ES
dc.description.references Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623. doi:10.1093/jxb/eru128 es_ES
dc.description.references Saliba-Colombani, V., Causse, M., Langlois, D., Philouze, J., & Buret, M. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theoretical and Applied Genetics, 102(2-3), 259-272. doi:10.1007/s001220051643 es_ES
dc.description.references Salinas, M., Capel, C., Alba, J. M., Mora, B., Cuartero, J., Fernández-Muñoz, R., … Capel, J. (2012). Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theoretical and Applied Genetics, 126(1), 83-92. doi:10.1007/s00122-012-1961-0 es_ES
dc.description.references Sefton, M. A., Skouroumounis, G. K., Elsey, G. M., & Taylor, D. K. (2011). Occurrence, Sensory Impact, Formation, and Fate of Damascenone in Grapes, Wines, and Other Foods and Beverages. Journal of Agricultural and Food Chemistry, 59(18), 9717-9746. doi:10.1021/jf201450q es_ES
dc.description.references Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., … Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 65(2), 419-428. doi:10.1093/jxb/ert382 es_ES
dc.description.references Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563 es_ES
dc.description.references Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.x es_ES
dc.description.references Skouroumounis GK Massywestropp RA Sefton MA Williams PJ . 1993. beta-Damascenone formation in juices and wines. In: Schreier P Winterhalter P , eds. Progress in flavour precursor studies: analysis, generation, biotechnology. Proceedings of the International Conference, Würzburg, Germany, September 30–October 2, 1992, 275–278. es_ES
dc.description.references Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047 es_ES
dc.description.references Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237x es_ES
dc.description.references Tieman, D., Bliss, P., McIntyre, L. M., Blandon-Ubeda, A., Bies, D., Odabasi, A. Z., … Klee, H. J. (2012). The Chemical Interactions Underlying Tomato Flavor Preferences. Current Biology, 22(11), 1035-1039. doi:10.1016/j.cub.2012.04.016 es_ES
dc.description.references Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287-8292. doi:10.1073/pnas.0602469103 es_ES
dc.description.references Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x es_ES
dc.description.references Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660-2669. doi:10.1016/j.phytochem.2007.06.005 es_ES
dc.description.references Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074 es_ES
dc.description.references Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology, 139(3), 1125-1137. doi:10.1104/pp.105.068130 es_ES
dc.description.references Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231 es_ES
dc.description.references Van Ooijen JW . 2006. JoinMap® 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen, The Netherlands: Kyazma BV. es_ES
dc.description.references Vogel, J. T., Tieman, D. M., Sims, C. A., Odabasi, A. Z., Clark, D. G., & Klee, H. J. (2010). Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture, 90(13), 2233-2240. doi:10.1002/jsfa.4076 es_ES
dc.description.references Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.77 es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Zorrilla-Fontanesi, Y., Rambla, J.-L., Cabeza, A., Medina, J. J., Sánchez-Sevilla, J. F., Valpuesta, V., … Amaya, I. (2012). Genetic Analysis of Strawberry Fruit Aroma and Identification of O-Methyltransferase FaOMT as the Locus Controlling Natural Variation in Mesifurane Content. Plant Physiology, 159(2), 851-870. doi:10.1104/pp.111.188318 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem