- -

Assessing parallel gene histories in viral genomes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing parallel gene histories in viral genomes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mengual-Chuliá, Beatriz es_ES
dc.contributor.author Bedhomme, Stephanie es_ES
dc.contributor.author Lafforgue, Guillaume es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Bravo, Ignacio G. es_ES
dc.date.accessioned 2017-05-05T11:59:22Z
dc.date.available 2017-05-05T11:59:22Z
dc.date.issued 2016-02-05
dc.identifier.issn 1471-2148
dc.identifier.uri http://hdl.handle.net/10251/80673
dc.description.abstract Background: The increasing abundance of sequence data has exacerbated a long known problem: gene trees and species trees for the same terminal taxa are often incongruent. Indeed, genes within a genome have not all followed the same evolutionary path due to events such as incomplete lineage sorting, horizontal gene transfer, gene duplication and deletion, or recombination. Considering conflicts between gene trees as an obstacle, numerous methods have been developed to deal with these incongruences and to reconstruct consensus evolutionary histories of species despite the heterogeneity in the history of their genes. However, inconsistencies can also be seen as a source of information about the specific evolutionary processes that have shaped genomes. Results: The goal of the approach here proposed is to exploit this conflicting information: we have compiled eleven variables describing phylogenetic relationships and evolutionary pressures and submitted them to dimensionality reduction techniques to identify genes with similar evolutionary histories. To illustrate the applicability of the method, we have chosen two viral datasets, namely papillomaviruses and Turnip mosaic virus (TuMV) isolates, largely dissimilar in genome, evolutionary distance and biology. Our method pinpoints viral genes with common evolutionary patterns. In the case of papillomaviruses, gene clusters match well our knowledge on viral biology and life cycle, illustrating the potential of our approach. For the less known TuMV, our results trigger new hypotheses about viral evolution and gene interaction. Conclusions: The approach here presented allows turning phylogenetic inconsistencies into evolutionary information, detecting gene assemblies with similar histories, and could be a powerful tool for comparative pathogenomics. es_ES
dc.description.sponsorship IGB was funded by the disappeared Spanish Ministry for Science and Innovation (CGL2010-16713). Work in Valencia was supported by grant BFU2012-30805 from the Spanish Ministry of Economy and Competitiveness (MINECO) to SFE. BMC is the recipient of an IDIBELL PhD fellowship. en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Evolutionary Biology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Gene trees,Incongruence,Phylogenetic inference,Species trees,Virus evolution,Pathogen evolution,Potyvirus,Papillomavirus,HPV es_ES
dc.subject Gene trees es_ES
dc.subject Incongruence es_ES
dc.subject Phylogenetic inference es_ES
dc.subject Species trees es_ES
dc.subject Virus evolution es_ES
dc.subject Pathogen evolution es_ES
dc.subject Potyvirus es_ES
dc.subject Papillomavirus es_ES
dc.subject HPV es_ES
dc.title Assessing parallel gene histories in viral genomes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12862-016-0605-4
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-16713/ES/BIODIVERSIDAD Y EVOLUCION DE PAPILLOMAVIRUSES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Mengual-Chuliá, B.; Bedhomme, S.; Lafforgue, G.; Elena Fito, SF.; Bravo, IG. (2016). Assessing parallel gene histories in viral genomes. BMC Evolutionary Biology. 16:1-15. https://doi.org/10.1186/s12862-016-0605-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s12862-016-0605-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.senia 323423 es_ES
dc.identifier.pmid 26847371 en_EN
dc.identifier.pmcid PMC4743424 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hess J, Goldman N. Addressing inter-gene heterogeneity in maximum likelihood phylogenomic analysis: Yeasts revisited. PLoS ONE. 2011;6:e22783. es_ES
dc.description.references Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497:327–31. es_ES
dc.description.references Zhong B, Liu L, Yan Z, Penny D. Origin of land plants using the multispecies coalescent model. Trends Plant Sci. 2013;18:492–5. es_ES
dc.description.references Song S, Liu L, Edwards SV, Wu S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci U S A. 2012;109:14942–7. es_ES
dc.description.references Nichols R. Gene trees and species trees are not the same. Trends Ecol Evol. 2001;16:358–64. es_ES
dc.description.references Maddison WP. Gene trees in species trees. Syst Biol. 1997;46:523–36. es_ES
dc.description.references Suh A, Smeds L, Ellegren H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of neoavian birds. PLoS Biol. 2015;13:e1002224. es_ES
dc.description.references McBreen K, Lockhart PJ. Reconstructing reticulate evolutionary histories of plants. Trends Plant Sci. 2006;11:398–404. es_ES
dc.description.references Dagan T, Martin W. The tree of one percent. Genome Biol. 2006;7:118. es_ES
dc.description.references Beiko RG, Harlow TJ, Ragan MA. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A. 2005;102:14332–7. es_ES
dc.description.references Cotton JA, Page RD. Going nuclear: Gene family evolution and vertebrate phylogeny reconciled. Proc Biol Sci. 2002;269:1555–61. es_ES
dc.description.references Kuhner MK, Yamato J. Practical performance of tree comparison metrics. Syst Biol. 2015;64:205–14. es_ES
dc.description.references Brochier C, Bapteste E, Moreira D, Philippe H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 2002;18:1–5. es_ES
dc.description.references Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF. Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol. 2005;5:33. es_ES
dc.description.references Leigh JW, Susko E, Baumgartner M, Roger AJ. Testing congruence in phylogenomic analysis. Syst Biol. 2008;57:104–15. es_ES
dc.description.references Leigh JW, Schliep K, Lopez P, Bapteste E. Let them fall where they may: Congruence analysis in massive phylogenetically messy data sets. Mol Biol Evol. 2011;28:2773–85. es_ES
dc.description.references de Vienne DM, Ollier S, Aguileta G. Phylo-mcoa: A fast and efficient method to detect outlier genes and species in phylogenomics using multiple co-inertia analysis. Mol Biol Evol. 2012;29:1587–98. es_ES
dc.description.references Wang S, Luo X, Wei W, Zheng Y, Dou Y, Cai X. Calculation of evolutionary correlation between individual genes and full-length genome: A method useful for choosing phylogenetic markers for molecular epidemiology. PLoS ONE. 2013;8:e81106. es_ES
dc.description.references Salichos L, Stamatakis A, Rokas A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol Biol Evol. 2014;31:1261–71. es_ES
dc.description.references Weyenberg G, Huggins PM, Schardl CL, Howe DK, Yoshida R. Kdetrees: Non-parametric estimation of phylogenetic tree distributions. Bioinformatics. 2014;30:2280–7. es_ES
dc.description.references de Queiroz A. For consensus (sometimes). Syst Biol. 1993;42:368–72. es_ES
dc.description.references Miyamoto MM, Fitch WM. Testing the covarion hypothesis of molecular evolution. Mol Biol Evol. 1995;12:503–13. es_ES
dc.description.references Sanderson MJ, Purvis A, Henze C. Phylogenetic supertrees: Assembling the trees of life. Trends Ecol Evol. 1998;13:105–9. es_ES
dc.description.references Bininda-Emonds ORP. Phylogenetic supertrees: Combining information to reveal the tree of life. Comput Biol. Dordrecht (The Netherlands): Kluwer Academic Publishers; 2004. es_ES
dc.description.references Creevey CJ, Fitzpatrick DA, Philip GK, Kinsella RJ, O’Connell MJ, Pentony MM, et al. Does a tree-like phylogeny only exist at the tips in the prokaryotes? Proc Biol Sci. 2004;271:2551–8. es_ES
dc.description.references Pisani D, Cotton JA, McInerney JO. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol. 2007;24:1752–60. es_ES
dc.description.references Ane C, Larget B, Baum DA, Smith SD, Rokas A. Bayesian estimation of concordance among gene trees. Mol Biol Evol. 2007;24:412–26. es_ES
dc.description.references Gordon AD. A measure of the agreement between rankings. Biometrika. 1979;66:7–15. es_ES
dc.description.references de Vienne DM, Giraud T, Martin OC. A congruence index for testing topological similarity between trees. Bioinformatics. 2007;23:3119–24. es_ES
dc.description.references Suchard MA, Weiss RE, Sinsheimer JS, Dorman KS, Patel M, McCabe ERB. Evolutionary similarity among genes. J Am Stat Assoc. 2003;98:653–62. es_ES
dc.description.references Edwards SV, Liu L, Pearl DK. High-resolution species trees without concatenation. Proc Natl Acad Sci U S A. 2007;104:5936–41. es_ES
dc.description.references Liu L, Pearl DK. Species trees from gene trees: Reconstructing bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol. 2007;56:504–14. es_ES
dc.description.references Liu L, Pearl DK, Brumfield RT, Edwards SV. Estimating species trees using multiple-allele DNA sequence data. Evolution. 2008;62:2080–91. es_ES
dc.description.references Levasseur C, Lapointe FJ. War and peace in phylogenetics: A rejoinder on total evidence and consensus. Syst Biol. 2001;50:881–91. es_ES
dc.description.references de Queiroz A, Gatesy J. The supermatrix approach to systematics. Trends Ecol Evol. 2007;22:34–41. es_ES
dc.description.references Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67. es_ES
dc.description.references Layeghifard M, Peres-Neto PR, Makarenkov V. Inferring explicit weighted consensus networks to represent alternative evolutionary histories. BMC Evol Biol. 2013;13:274. es_ES
dc.description.references Stockham C, Wang LS, Warnow T. Statistically based postprocessing of phylogenetic analysis by clustering. Bioinformatics. 2002;18 Suppl 1:S285–93. es_ES
dc.description.references Bonnard C, Berry V, Lartillot N. Multipolar consensus for phylogenetic trees. Syst Biol. 2006;55:837–43. es_ES
dc.description.references Guenoche A. Multiple consensus trees: A method to separate divergent genes. BMC Bioinformatics. 2013;14:46. es_ES
dc.description.references Duggal R, Cuconati A, Gromeier M, Wimmer E. Genetic recombination of poliovirus in a cell-free system. Proc Natl Acad Sci U S A. 1997;94:13786–91. es_ES
dc.description.references Reiter J, Perez-Vilaro G, Scheller N, Mina LB, Diez J, Meyerhans A. Hepatitis c virus rna recombination in cell culture. J Hepatol. 2011;55:777–83. es_ES
dc.description.references Desbiez C, Lecoq H. Evidence for multiple intraspecific recombinants in natural populations of watermelon mosaic virus (wmv, potyvirus). Arch Virol. 2008;153:1749–54. es_ES
dc.description.references Larsen RC, Miklas PN, Druffel KL, Wyatt SD. Nl-3 k strain is a stable and naturally occurring interspecific recombinant derived from bean common mosaic necrosis virus and bean common mosaic virus. Phytopathology. 2005;95:1037–42. es_ES
dc.description.references Valli A, Lopez-Moya JJ, Garcia JA. Recombination and gene duplication in the evolutionary diversification of p1 proteins in the family potyviridae. J Gen Virol. 2007;88:1016–28. es_ES
dc.description.references Gottschling M, Bravo IG, Schulz E, Bracho MA, Deaville R, Jepson PD, et al. Modular organizations of novel cetacean papillomaviruses. Mol Phylogenet Evol. 2011;59:34–42. es_ES
dc.description.references Woolford L, Rector A, Van Ranst M, Ducki A, Bennett MD, Nicholls PK, et al. A novel virus detected in papillomas and carcinomas of the endangered western barred bandicoot (perameles bougainville) exhibits genomic features of both the papillomaviridae and polyomaviridae. J Virol. 2007;81:13280–90. es_ES
dc.description.references Chen X, Zhang Q, He C, Zhang L, Li J, Zhang W, et al. Recombination and natural selection in hepatitis e virus genotypes. J Med Virol. 2012;84:1396–407. es_ES
dc.description.references Cadar D, Csagola A, Kiss T, Tuboly T. Capsid protein evolution and comparative phylogeny of novel porcine parvoviruses. Mol Phylogenet Evol. 2013;66:243–53. es_ES
dc.description.references Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology. 2013;435:258–68. es_ES
dc.description.references Münk C, Willemsen A, Bravo IG. An ancient history of gene duplications, fusions and losses in the evolution of apobec3 mutators in mammals. BMC Evol Biol. 2012;12:71. es_ES
dc.description.references Daugherty MD, Malik HS. Rules of engagement: Molecular insights from host-virus arms races. Annu Rev Genet. 2012;46:677–700. es_ES
dc.description.references Edgar RC. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. es_ES
dc.description.references Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52. es_ES
dc.description.references Stamatakis A, Ludwig T, Meier H. Raxml-iii: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63. es_ES
dc.description.references Soria-Carrasco V, Talavera G, Igea J, Castresana J. The k tree score: Quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics. 2007;23:2954–6. es_ES
dc.description.references Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T. Selecton 2007: Advanced models for detecting positive and purifying selection using a bayesian inference approach. Nucleic Acids Res. 2007;35:W506–11. es_ES
dc.description.references Doron-Faigenboim A, Pupko T. A combined empirical and mechanistic codon model. Mol Biol Evol. 2007;24:388–97. es_ES
dc.description.references Swanson WJ, Nielsen R, Yang Q. Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol. 2003;20:18–20. es_ES
dc.description.references Shukla DD, Ward CW, Brunt AA. The potyviridae. Wallingford (UK): CABI; 1994. es_ES
dc.description.references Chung BY, Miller WA, Atkins JF, Firth AE. An overlapping essential gene in the potyviridae. Proc Natl Acad Sci U S A. 2008;105:5897–902. es_ES
dc.description.references Tan Z, Wada Y, Chen J, Ohshima K. Inter- and intralineage recombinants are common in natural populations of turnip mosaic virus. J Gen Virol. 2004;85:2683–96. es_ES
dc.description.references Bravo IG, de Sanjose S, Gottschling M. The clinical importance of understanding the evolution of papillomaviruses. Trends Microbiol. 2010;18:432–8. es_ES
dc.description.references Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: Lessons learned by comparing high- and low-risk viruses. Virology. 2012;424:77–98. es_ES
dc.description.references Bravo IG, Alonso A. Mucosal human papillomaviruses encode four different e5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J Virol. 2004;78:13613–26. es_ES
dc.description.references Garcia-Vallve S, Alonso A, Bravo IG. Papillomaviruses: Different genes have different histories. Trends Microbiol. 2005;13:514–21. es_ES
dc.description.references Bravo IG, Felez-Sanchez M. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health. 2015;2015:32–51. es_ES
dc.description.references Aleman-Verdaguer ME, Goudou-Urbino C, Dubern J, Beachy RN, Fauquet C. Analysis of the sequence diversity of the p1, hc, p3, nib and cp genomic regions of several yam mosaic potyvirus isolates: Implications for the intraspecies molecular diversity of potyviruses. J Gen Virol. 1997;78(Pt 6):1253–64. es_ES
dc.description.references Sakai J, Mori M, Morishita T, Tanaka M, Hanada K, Usugi T, et al. Complete nucleotide sequence and genome organization of sweet potato feathery mottle virus (s strain) genomic rna: The large coding region of the p1 gene. Arch Virol. 1997;142:1553–62. es_ES
dc.description.references Tordo VM, Chachulska AM, Fakhfakh H, Le Romancer M, Robaglia C, Astier-Manifacier S. Sequence polymorphism in the 5’ntr and in the p1 coding region of potato virus y genomic rna. J Gen Virol. 1995;76(Pt 4):939–49. es_ES
dc.description.references Verchot J, Carrington JC. Evidence that the potyvirus p1 proteinase functions in trans as an accessory factor for genome amplification. J Virol. 1995;69:3668–74. es_ES
dc.description.references Salvador B, Saenz P, Yanguez E, Quiot JB, Quiot L, Delgadillo MO, et al. Host-specific effect of p1 exchange between two potyviruses. Mol Plant Pathol. 2008;9:147–55. es_ES
dc.description.references Desbiez C, Lecoq H. The nucleotide sequence of watermelon mosaic virus (wmv, potyvirus) reveals interspecific recombination between two related potyviruses in the 5’ part of the genome. Arch Virol. 2004;149:1619–32. es_ES
dc.description.references Majer E, Salvador Z, Zwart MP, Willemsen A, Elena SF, Daros JA. Relocation of the nib gene in the tobacco etch potyvirus genome. J Virol. 2014;88:4586–90. es_ES
dc.description.references Pasin F, Simon-Mateo C, Garcia JA. The hypervariable amino-terminus of p1 protease modulates potyviral replication and host defense responses. PLoS Pathog. 2014;10:e1003985. es_ES
dc.description.references Lopez-Lastra M, Rivas A, Barria MI. Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation. Biol Res. 2005;38:121–46. es_ES
dc.description.references Kang ST, Wang HC, Yang YT, Kou GH, Lo CF. The DNA virus white spot syndrome virus uses an internal ribosome entry site for translation of the highly expressed nonstructural protein icp35. J Virol. 2013;87:13263–78. es_ES
dc.description.references Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology. 1995;206:1007–16. es_ES
dc.description.references Carrington JC, Jensen PE, Schaad MC. Genetic evidence for an essential role for potyvirus ci protein in cell-to-cell movement. Plant J. 1998;14:393–400. es_ES
dc.description.references Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, et al. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein p3n-pipo. PLoS Pathog. 2010;6:e1000962. es_ES
dc.description.references Felez-Sanchez M, Trosemeier JH, Bedhomme S, Gonzalez-Bravo MI, Kamp C, Bravo IG. Cancer, warts, or asymptomatic infections: Clinical presentation matches codon usage preferences in human papillomaviruses. Genome Biol Evol. 2015;7:2117–35. es_ES
dc.description.references Doorbar J, Gallimore PH. Identification of proteins encoded by the l1 and l2 open reading frames of human papillomavirus 1a. J Virol. 1987;61:2793–9. es_ES
dc.description.references Hughes FJ, Romanos MA. E1 protein of human papillomavirus is a DNA helicase/atpase. Nucleic Acids Res. 1993;21:5817–23. es_ES
dc.description.references Sarafi TR, McBride AA. Domains of the bpv-1 e1 replication protein required for origin-specific DNA binding and interaction with the e2 transactivator. Virology. 1995;211:385–96. es_ES
dc.description.references Chen G, Stenlund A. Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator e1. J Virol. 1998;72:2567–76. es_ES
dc.description.references McBride AA. Replication and partitioning of papillomavirus genomes. Adv Virus Res. 2008;72:155–205. es_ES
dc.description.references McBride A, Myers G. The e2 proteins: An update. In: Laboratory HPLAN. Los Alamos: Myers, G., and coworkers; 1997. p. III54–99. es_ES
dc.description.references Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus l1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci U S A. 1992;89:12180–4. es_ES
dc.description.references Penrose KJ, McBride AA. Proteasome-mediated degradation of the papillomavirus e2-ta protein is regulated by phosphorylation and can modulate viral genome copy number. J Virol. 2000;74:6031–8. es_ES
dc.description.references Poddar A, Reed SC, McPhillips MG, Spindler JE, McBride AA. The human papillomavirus type 8 e2 tethering protein targets the ribosomal DNA loci of host mitotic chromosomes. J Virol. 2009;83:640–50. es_ES
dc.description.references Lai MC, Teh BH, Tarn WY. A human papillomavirus e2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mrna processing. J Biol Chem. 1999;274:11832–41. es_ES
dc.description.references Zou N, Lin BY, Duan F, Lee KY, Jin G, Guan R, et al. The hinge of the human papillomavirus type 11 e2 protein contains major determinants for nuclear localization and nuclear matrix association. J Virol. 2000;74:3761–70. es_ES
dc.description.references Steger G, Schnabel C, Schmidt HM. The hinge region of the human papillomavirus type 8 e2 protein activates the human p21(waf1/cip1) promoter via interaction with sp1. J Gen Virol. 2002;83:503–10. es_ES
dc.description.references Hughes AL, Hughes MA. Patterns of nucleotide difference in overlapping and non-overlapping reading frames of papillomavirus genomes. Virus Res. 2005;113:81–8. es_ES
dc.description.references Ahola H, Bergman P, Strom AC, Moreno-Lopez J, Pettersson U. Organization and expression of the transforming region from the european elk papillomavirus (eepv). Gene. 1986;50:195–205. es_ES
dc.description.references Chen Z, Schiffman M, Herrero R, Desalle R, Burk RD. Human papillomavirus (hpv) types 101 and 103 isolated from cervicovaginal cells lack an e6 open reading frame (orf) and are related to gamma-papillomaviruses. Virology. 2007;360:447–53. es_ES
dc.description.references Nobre RJ, Herraez-Hernandez E, Fei JW, Langbein L, Kaden S, Grone HJ, et al. E7 oncoprotein of novel human papillomavirus type 108 lacking the e6 gene induces dysplasia in organotypic keratinocyte cultures. J Virol. 2009;83:2907–16. es_ES
dc.description.references Stevens H, Rector A, Bertelsen MF, Leifsson PS, Van Ranst M. Novel papillomavirus isolated from the oral mucosa of a polar bear does not cluster with other papillomaviruses of carnivores. Vet Microbiol. 2008;129:108–16. es_ES
dc.description.references Stevens H, Rector A, Van Der Kroght K, Van Ranst M. Isolation and cloning of two variant papillomaviruses from domestic pigs: Sus scrofa papillomaviruses type 1 variants a and b. J Gen Virol. 2008;89:2475–81. es_ES
dc.description.references Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 e7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989;243:934–7. es_ES
dc.description.references Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 e6 proteins with p53. Science. 1990;248:76–9. es_ES
dc.description.references Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the e6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 1991;10:4129–35. es_ES
dc.description.references Hartley KA, Alexander KA. Human tata binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing e1-e2 protein complex formation on the viral origin of replication. J Virol. 2002;76:5014–23. es_ES
dc.description.references Ilves I, Kadaja M, Ustav M. Two separate replication modes of the bovine papillomavirus bpv1 origin of replication that have different sensitivity to p53. Virus Res. 2003;96:75–84. es_ES
dc.description.references Narahari J, Fisk JC, Melendy T, Roman A. Interactions of the cellular ccaat displacement protein and human papillomavirus e2 protein with the viral origin of replication can regulate DNA replication. Virology. 2006;350:302–11. es_ES
dc.description.references Barrow-Laing L, Chen W, Roman A. Low- and high-risk human papillomavirus e7 proteins regulate p130 differently. Virology. 2010;400:233–9. es_ES
dc.description.references White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, et al. Systematic identification of interactions between host cell proteins and e7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A. 2012;109:E260–7. es_ES
dc.description.references Nomine Y, Masson M, Charbonnier S, Zanier K, Ristriani T, Deryckere F, et al. Structural and functional analysis of e6 oncoprotein: Insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell. 2006;21:665–78. es_ES
dc.description.references Zanier K, ould M’hamed ould Sidi A, Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, et al. Solution structure analysis of the hpv16 e6 oncoprotein reveals a self-association mechanism required for e6-mediated degradation of p53. Structure. 2012;20:604–17. es_ES
dc.description.references Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM. Distinct evolutionary histories of the DNA-a and DNA-b components of bipartite begomoviruses. BMC Evol Biol. 2010;10:97. es_ES
dc.description.references Chen JM, Sun YX, Chen JW, Liu S, Yu JM, Shen CJ, et al. Panorama phylogenetic diversity and distribution of type a influenza viruses based on their six internal gene sequences. J Virol. 2009;6:137. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem