Tur Valiente, M.; Albelda Vitoria, J.; Nadal Soriano, E.; Ródenas García, JJ. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering. 98(6):399-417. https://doi.org/10.1002/nme.4629
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80839
Título:
|
Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers
|
Autor:
|
Tur Valiente, Manuel
Albelda Vitoria, José
Nadal Soriano, Enrique
Ródenas García, Juan José
|
Entidad UPV:
|
Universitat Politècnica de València. Centro de Investigación en Tecnología de Vehículos - Centre d'Investigació en Tecnologia de Vehicles
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
|
Fecha difusión:
|
|
Resumen:
|
[EN] The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical ...[+]
[EN] The use of Cartesian meshes independent of the geometry has some advantages over the traditional meshes used in the finite element method. The main advantage is that their use together with an appropriate hierarchical data structure reduces the computational cost of the finite element analysis. This improvement is based on the substitution of the traditional mesh generation process by an optimized procedure for intersecting the Cartesian mesh with the boundary of the domain and the use efficient solvers based on the hierarchical data structure. One major difficulty associated to the use of Cartesian grids is the fact that the mesh nodes do not, in general, lie over the boundary of the domain, increasing the difficulty to impose Dirichlet boundary conditions. In this paper, Dirichlet boundary conditions are imposed by means of the Lagrange multipliers technique. A new functional has been added to the initial formulation of the problem that has the effect of stabilizing the problem. The technique here presented allows for a simple definition of the Lagrange multipliers field that even allow us to directly condense the degrees of freedom of the Lagrange multipliers at element level.
[-]
|
Palabras clave:
|
Dirichlet boundary conditions
,
Lagrange multipliers
,
Stabilization
,
Immersed boundary method
,
Cartesian grid
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
International Journal for Numerical Methods in Engineering. (issn:
0029-5981
) (eissn:
1097-0207
)
|
DOI:
|
10.1002/nme.4629
|
Editorial:
|
Wiley
|
Versión del editor:
|
http://dx.doi.org/10.1002/nme.4629
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/
info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/
info:eu-repo/grantAgreement/MICINN//AP2008-01086/ES/AP2008-01086/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2012%2F023/ES/
|
Descripción:
|
This is the pre-peer reviewed version of the following article: Tur, M., Albelda, J., Nadal, E. and Ródenas, J. J. (2014), Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. Int. J. Numer. Meth. Engng, 98: 399–417, which has been published in final form at http://dx.doi.org/10.1002/nme.4629 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
|
Agradecimientos:
|
The authors acknowledge the financial support received from the research project DPI2010-20542 of the Ministerio de Economia y Competitividad. Also, we appreciated the financial support of the FPU program (AP2008-01086) ...[+]
The authors acknowledge the financial support received from the research project DPI2010-20542 of the Ministerio de Economia y Competitividad. Also, we appreciated the financial support of the FPU program (AP2008-01086) of the Universitat Politecnica de Valencia and the Generalitat Valenciana (PROMETEO/2012/023). The authors are also grateful for the support of the Framework Program 7 Initial Training Network Funding under grant number 289361 'Integrating Numerical Simulation and Geometric Design Technology (INSIST)'.
[-]
|
Tipo:
|
Artículo
|