Mostrar el registro sencillo del ítem
dc.contributor.author | Correia , Daniela | es_ES |
dc.contributor.author | Ribeiro, Clarisse | es_ES |
dc.contributor.author | Sencadas, V. | es_ES |
dc.contributor.author | Vikingsson, Line | es_ES |
dc.contributor.author | Gasch, M. Oliver | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Botelho, G. | es_ES |
dc.contributor.author | Lanceros-Mendez, Senentxu | es_ES |
dc.date.accessioned | 2017-05-11T11:51:05Z | |
dc.date.available | 2017-05-11T11:51:05Z | |
dc.date.issued | 2016-02-15 | |
dc.identifier.issn | 0261-3069 | |
dc.identifier.uri | http://hdl.handle.net/10251/80993 | |
dc.description.abstract | Cell supports based on electroactive materials, that generate electrical signal variations as a response to mechanical deformations and vice-versa, are gaining increasing attention for tissue engineering applications. In particular, poly(vinylidene fluoride), PVDF, has been proven to be suitable for these applications in the form of films and two-dimensional membranes. In this work, several strategies have been implemented in order to develop PVDF three-dimensional scaffolds. Three processing methods, including solvent casting with particulate leaching and three-dimensional nylon, and freeze extraction with poly(vinyl alcohol) templates are presented in order to obtain three-dimensional scaffolds with different architectures and interconnected porosity. Further, it is shown that the scaffolds are in the electroactive beta-phase and show a crystallinity degree of similar to 45%. Finally, quasi-static mechanical measurements showed that an increase of the porous size within the scaffold leads to a tensile strengths and the Young's modulus decrease, allowing tuning scaffold properties for specific tissues. | es_ES |
dc.description.sponsorship | This work is funded by FEDER funds through the "Programa Operacional Fatores de Competitividade - COMPETE" and by national funds arranged by FCT Fundacao para a Ciencia e a Tecnologia, project reference PEST-C/FIS/U1607/2014. The authors also thank support from the COST Action MP1301 "New Generation Biomimetic and Customized Implants for Bone Engineering". DMC and CR, thank the FCT for the SFRH/BD/82411/2011 and SFRH/BPD/90870/2012 grants, respectively. JLGR acknowledges the support of Ministerio de Economia y Competitividad, MINECO, through the MAT2013-46467-C4-1-R project CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Materials and Design | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Poly(vinylidene fluoride) | es_ES |
dc.subject | Scaffolds | es_ES |
dc.subject | Tissue engineering | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Piezoelectric | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.matdes.2015.12.043 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//PEST-C/FIS/UI607/2014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT//SFRH/BD/82411/2011/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BD/82411/2011/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT// SFRH/BPD/90870/2012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/90870/2012/PT/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Correia, D.; Ribeiro, C.; Sencadas, V.; Vikingsson, L.; Gasch, MO.; Gómez Ribelles, JL.; Botelho, G.... (2016). Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride). Materials and Design. 92:674-681. https://doi.org/10.1016/j.matdes.2015.12.043 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.matdes.2015.12.043 | es_ES |
dc.description.upvformatpinicio | 674 | es_ES |
dc.description.upvformatpfin | 681 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 92 | es_ES |
dc.relation.senia | 325489 | es_ES |
dc.identifier.eissn | 1873-4197 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.contributor.funder | European Regional Development Fund |