- -

Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernal-Garcia, Alvaro es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2017-05-17T07:19:38Z
dc.date.available 2017-05-17T07:19:38Z
dc.date.issued 2016-11
dc.identifier.issn 0306-4549
dc.identifier.uri http://hdl.handle.net/10251/81249
dc.description This is the author’s version of a work that was accepted for publication in Annals of Nuclear Energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Annals of Nuclear Energy, vol. 97 (2016) DOI 10.1016/j.anucene.2016.06.023. es_ES
dc.description.abstract The neutron flux spatial distribution in Boiling Water Reactors (BWRs) can be calculated by means of the Neutron Diffusion Equation (NDE), which is a space- and time-dependent differential equation. In steady state conditions, the time derivative terms are zero and this equation is rewritten as an eigenvalue problem. In addition, the spatial partial derivatives terms are transformed into algebraic terms by discretizing the geometry and using numerical methods. As regards the geometrical discretization, BWRs are complex systems containing different components of different geometries and materials, but they are usually modelled as parallelepiped nodes each one containing only one homogenized material to simplify the solution of the NDE. There are several techniques to correct the homogenization in the node, but the most commonly used in BWRs is that based on Assembly Discontinuity Factors (ADFs). As regards numerical methods, the Finite Volume Method (FVM) is feasible and suitable to be applied to the NDE. In this paper, a FVM based on a polynomial expansion method has been used to obtain the matrices of the eigenvalue problem, assuring the accomplishment of the ADFs for a BWR This eigenvalue problem has been solved by means of the SLEPc library. (C) 2016 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte under the grant FPU13/01009, the Spanish Ministerio de Ciencia e Innovacion under projects ENE2014-59442-P, the Spanish Ministerio de Economia y Competitividad and the European Fondo Europeo de Desarrollo Regional (FEDER) under project ENE2015-68353-P (MINECO/FEDER), the Generalitat Valenciana under projects PROMETEOII/2014/008, the Universitat Politecnica de Valencia under project UPPTE/2012/118, and the Spanish Ministerio de Economia y Competitividad under the project TIN2013-41049-P. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier Masson es_ES
dc.relation.ispartof Annals of Nuclear Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Assembly Discontinuity Factor es_ES
dc.subject Boiling Water Reactor es_ES
dc.subject Neutron Diffusion Equation es_ES
dc.subject Finite Volume Method es_ES
dc.subject Eigenvalue problem es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.anucene.2016.06.023
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPPTE%2F2012%2F118/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Bernal-Garcia, A.; Román Moltó, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2016). Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR. Annals of Nuclear Energy. 97:76-85. https://doi.org/10.1016/j.anucene.2016.06.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.anucene.2016.06.023 es_ES
dc.description.upvformatpinicio 76 es_ES
dc.description.upvformatpfin 85 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.relation.senia 328847 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem