- -

Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Carmen es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2017-05-17T08:27:28Z
dc.date.available 2017-05-17T08:27:28Z
dc.date.issued 2016-12
dc.identifier.issn 0006-3835
dc.identifier.uri http://hdl.handle.net/10251/81254
dc.description The final publication is available at Springer via http://dx.doi.org/ 10.1007/s10543-016-0601-5. es_ES
dc.description.abstract We investigate how to adapt the Q-Arnoldi method for the case of symmetric quadratic eigenvalue problems, that is, we are interested in computing a few eigenpairs of with M, C, K symmetric matrices. This problem has no particular structure, in the sense that eigenvalues can be complex or even defective. Still, symmetry of the matrices can be exploited to some extent. For this, we perform a symmetric linearization , where A, B are symmetric matrices but the pair (A, B) is indefinite and hence standard Lanczos methods are not applicable. We implement a symmetric-indefinite Lanczos method and enrich it with a thick-restart technique. This method uses pseudo inner products induced by matrix B for the orthogonalization of vectors (indefinite Gram-Schmidt). The projected problem is also an indefinite matrix pair. The next step is to write a specialized, memory-efficient version that exploits the block structure of A and B, referring only to the original problem matrices M, C, K as in the Q-Arnoldi method. This results in what we have called the Q-Lanczos method. Furthermore, we define a stabilized variant analog of the TOAR method. We show results obtained with parallel implementations in SLEPc. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy and Competitiveness under Grant TIN2013-41049-P. Carmen Campos was supported by the Spanish Ministry of Education, Culture and Sport through an FPU Grant with reference AP2012-0608. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof BIT Numerical Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Quadratic eigenvalue problem es_ES
dc.subject Pseudo-Lanczos es_ES
dc.subject Q-Arnoldi es_ES
dc.subject TOAR es_ES
dc.subject Thick-restart es_ES
dc.subject SLEPc es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10543-016-0601-5
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-41049-P/ES/EXTENSION DE LA LIBRERIA SLEPC PARA POLINOMIOS MATRICIALES, FUNCIONES MATRICIALES Y ECUACIONES MATRICIALES EN PLATAFORMAS DE COMPUTACION EMERGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2012-0608/ES/AP2012-0608/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Campos, C.; Román Moltó, JE. (2016). Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems. BIT Numerical Mathematics. 56(4):1213-1236. https://doi.org/10.1007/s10543-016-0601-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://link.springer.com/article/10.1007/s10543-016-0601-5 es_ES
dc.description.upvformatpinicio 1213 es_ES
dc.description.upvformatpfin 1236 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 327831 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005) es_ES
dc.description.references Bai, Z., Day, D., Ye, Q.: ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(4), 1060–1082 (1999) es_ES
dc.description.references Bai, Z., Ericsson, T., Kowalski, T.: Symmetric indefinite Lanczos method. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the solution of algebraic eigenvalue problems: a practical guide, pp. 249–260. Society for Industrial and Applied Mathematics, Philadelphia (2000) es_ES
dc.description.references Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Rupp, K., Smith, B., Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015) es_ES
dc.description.references Benner, P., Faßbender, H., Stoll, M.: Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method. Electron. Trans. Numer. Anal. 29, 212–229 (2008) es_ES
dc.description.references Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP: a collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 7:1–7:28 (2013) es_ES
dc.description.references Campos, C., Roman, J.E.: Parallel Krylov solvers for the polynomial eigenvalue problem in SLEPc (2015, submitted) es_ES
dc.description.references Day, D.: An efficient implementation of the nonsymmetric Lanczos algorithm. SIAM J. Matrix Anal. Appl. 18(3), 566–589 (1997) es_ES
dc.description.references Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005) es_ES
dc.description.references Hernandez, V., Roman, J.E., Tomas, A.: Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Comput. 33(7–8), 521–540 (2007) es_ES
dc.description.references Jia, Z., Sun, Y.: A refined variant of SHIRA for the skew-Hamiltonian/Hamiltonian (SHH) pencil eigenvalue problem. Taiwan J. Math. 17(1), 259–274 (2013) es_ES
dc.description.references Kressner, D., Roman, J.E.: Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl. 21(4), 569–588 (2014) es_ES
dc.description.references Kressner, D., Pandur, M.M., Shao, M.: An indefinite variant of LOBPCG for definite matrix pencils. Numer. Algorithms 66(4), 681–703 (2014) es_ES
dc.description.references Lancaster, P.: Linearization of regular matrix polynomials. Electron. J. Linear Algebra 17, 21–27 (2008) es_ES
dc.description.references Lancaster, P., Ye, Q.: Rayleigh-Ritz and Lanczos methods for symmetric matrix pencils. Linear Algebra Appl. 185, 173–201 (1993) es_ES
dc.description.references Lu, D., Su, Y.: Two-level orthogonal Arnoldi process for the solution of quadratic eigenvalue problems (2012, manuscript) es_ES
dc.description.references Meerbergen, K.: The Lanczos method with semi-definite inner product. BIT 41(5), 1069–1078 (2001) es_ES
dc.description.references Meerbergen, K.: The Quadratic Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 30(4), 1463–1482 (2008) es_ES
dc.description.references Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput. 22(6), 1905–1925 (2001) es_ES
dc.description.references Parlett, B.N.: The symmetric Eigenvalue problem. Prentice-Hall, Englewood Cliffs (1980) (reissued with revisions by SIAM, Philadelphia) es_ES
dc.description.references Parlett, B.N., Chen, H.C.: Use of indefinite pencils for computing damped natural modes. Linear Algebra Appl. 140(1), 53–88 (1990) es_ES
dc.description.references Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lánczos algorithm for unsymmetric matrices. Math. Comput. 44(169), 105–124 (1985) es_ES
dc.description.references de Samblanx, G., Bultheel, A.: Nested Lanczos: implicitly restarting an unsymmetric Lanczos algorithm. Numer. Algorithms 18(1), 31–50 (1998) es_ES
dc.description.references Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996) es_ES
dc.description.references Stewart, G.W.: A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001) es_ES
dc.description.references Su, Y., Zhang, J., Bai, Z.: A compact Arnoldi algorithm for polynomial eigenvalue problems. In: Presented at RANMEP (2008) es_ES
dc.description.references Tisseur, F.: Tridiagonal-diagonal reduction of symmetric indefinite pairs. SIAM J. Matrix Anal. Appl. 26(1), 215–232 (2004) es_ES
dc.description.references Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001) es_ES
dc.description.references Watkins, D.S.: The matrix Eigenvalue problem: GR and Krylov subspace methods. Society for Industrial and Applied Mathematics (2007) es_ES
dc.description.references Wu, K., Simon, H.: Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem