- -

Language identification of multilingual posts from Twitter: a case study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Language identification of multilingual posts from Twitter: a case study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pla Santamaría, Ferran es_ES
dc.contributor.author Hurtado Oliver, Lluis Felip es_ES
dc.date.accessioned 2017-05-17T08:45:51Z
dc.date.available 2017-05-17T08:45:51Z
dc.date.issued 2016-09-29
dc.identifier.issn 0219-1377
dc.identifier.uri http://hdl.handle.net/10251/81256
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-016-0997-x es_ES
dc.description.abstract This paper describes a method for handling multi-class and multi-label classification problems based on the support vector machine formalism. This method has been applied to the language identification problem in Twitter. The system evaluation was performed mainly on a Twitter data set developed in the TweetLID workshop. This data set contains bilingual tweets written in the most commonly used Iberian languages (i.e., Spanish, Portuguese, Catalan, Basque, and Galician) as well as the English language. We address the following problems: (1) social media texts. We propose a suitable tokenization that processes the peculiarities of Twitter; (2) multilingual tweets. Since a tweet can belong to more than one language, we need to use a multi-class and multi-label classifier; (3) similar languages. We study the main confusions among similar languages; and (4) unbalanced classes. We propose threshold-based strategy to favor classes with less data. We have also studied the use of Wikipedia and the addition of new tweets in order to increase the training data set. Additionally, we have tested our system on Bergsma corpus, a collection of tweets in nine languages, focusing on confusable languages using the Cyrillic, Arabic, and Devanagari alphabets. To our knowledge, we obtained the best results published on the TweetLID data set and results that are in line with the best results published on Bergsma data set. es_ES
dc.description.sponsorship This work has been partially funded by the project ASLP-MULAN: Audio, Speech and Language Processing for Multimedia Analytics (MINECO TIN2014-54288-C4-3-R). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Knowledge and Information Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Natural language processing es_ES
dc.subject Language identification es_ES
dc.subject Multi-label classification es_ES
dc.subject Support vector machines es_ES
dc.subject Twitter es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Language identification of multilingual posts from Twitter: a case study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10115-016-0997-x
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-54288-C4-3-R/ES/PROCESADO DE AUDIO, HABLA Y LENGUAJE PARA ANALISIS DE INFORMACION MULTIMEDIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Pla Santamaría, F.; Hurtado Oliver, LF. (2016). Language identification of multilingual posts from Twitter: a case study. Knowledge and Information Systems. 51(3):965-989. https://doi.org/10.1007/s10115-016-0997-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10115-016-0997-x es_ES
dc.description.upvformatpinicio 965 es_ES
dc.description.upvformatpfin 989 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 325934 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Baldwin T, Lui M (2010) Language identification: the long and the short of the matter. In: Human language technologies: the 2010 annual conference of the North American chapter of the association for computational linguistics, HLT ‘10. Association for Computational Linguistics, Stroudsburg, PA, pp 229–237 es_ES
dc.description.references Bergsma S, McNamee P, Bagdouri M, Fink C, Wilson T (2012) Language identification for creating language-specific twitter collections. In: Proceedings of the second workshop on language in social media, LSM ‘12. Association for Computational Linguistics, Stroudsburg, PA, pp 65–74 es_ES
dc.description.references Carter S, Weerkamp W, Tsagkias M (2013) Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang Resour Eval 47(1):195–215 es_ES
dc.description.references Cavnar WB, Trenkle JM (1994) N-gram-based text categorization. In: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval, pp. 161–175 es_ES
dc.description.references Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297 es_ES
dc.description.references Gamallo P, García M, Sotelo S, Campos JRP (2014) Comparing ranking-based and naive bayes approaches to language detection on tweets. ‘TweetLID@SEPLN’, pp 12–16 es_ES
dc.description.references Goldszmidt M, Najork M, Paparizos S (2013) Boot-strapping language identifiers for short colloquial postings. In: Proceeding of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECMLPKDD 2013). Springer es_ES
dc.description.references Grefenstette G (1995) Comparing two language identification schemes. In: 3rd international conference on statistical analysis of textural data es_ES
dc.description.references Hurtado LF, Pla F, Giménez M, Arnal ES (2014) Elirf-upv en tweetlid: Identificación del idioma en twitter, In: Proceedings of the Tweet language identification workshop co-located with 30th conference of the Spanish society for natural language processing, TweetLID@SEPLN 2014, Girona, 16 Sept 2014, pp 35–38 es_ES
dc.description.references Jauhiainen T, Lindén K, Jauhiainen H (2015) Language set identification in noisy synthetic multilingual documents. In: Gelbukh A (ed) Computational linguistics and intelligent text processing, vol 9041 of lecture notes in computer science. Springer International Publishing, pp 633–643 es_ES
dc.description.references Joachims T (1998) Text categorization with support vector machines: learning with many relevant features. In: Nédellec C, Rouveirol C (eds) Proceedings of ECML-98, 10th European conference on machine learning, no. 1398. Springer, Heidelberg, pp 137–142 es_ES
dc.description.references Liu B (2012) Sentiment analysis and opinion mining. A comprehensive introduction and survey. Morgan & Claypool Publishers, San Rafael es_ES
dc.description.references Ljubešić N, Mikelić N, Boras D (2007) Language identification: How to distinguish similar languages, In: Lužar-Stifter V, Hljuz Dobrić V (eds), Proceedings of the 29th international conference on information technology interfaces. SRCE University Computing Centre, Zagreb, pp 541–546 es_ES
dc.description.references Lui M, Baldwin T (2014) Accurate language identification of twitter messages. In: Proceedings of the EACL 2014 workshop on language analysis in social media (LASM 2014), pp 17–25 es_ES
dc.description.references Lui M, Lau JH, Baldwin T (2014) Automatic detection and language identification of multilingual documents. Trans Assoc Comput Linguist 2:27–40 es_ES
dc.description.references Nguyen D, Dogruoz AS (2014) Word level language identification in online multilingual communication. In: Proceedings of the 2013 conference on empirical methods in natural language processing es_ES
dc.description.references O’Connor B, Krieger M, Ahn D (2010) Tweetmotif: exploratory search and topic summarization for twitter. In: Cohen WW, Gosling S (eds) Proceedings of the fourth international conference on weblogs and social media, ICWSM 2010, Washington, DC. The AAAI Press, 23–26 May 2010 es_ES
dc.description.references Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 es_ES
dc.description.references Pla F, Hurtado L-F (2014) Political tendency identification in twitter using sentiment analysis techniques. In: Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers. Dublin City University and Association for Computational Linguistics, Dublin, pp 183–192 es_ES
dc.description.references Prager JM (1999) Linguini: language identification for multilingual documents. J Manage Inf Syst 16(3):71–101 es_ES
dc.description.references Ramón Quevedo J, Luaces O, Bahamonde A (2012) Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recogn 45(2):876–883 es_ES
dc.description.references Rao D, Yarowsky D, Shreevats A, Gupta M (2010) Classifying latent user attributes in twitter. In: Proceedings of the 2nd international workshop on search and mining user-generated contents, SMUC ‘10. ACM, New York, NY, pp 37–44 es_ES
dc.description.references Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47 es_ES
dc.description.references Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Warehous Min 2007:1–13 es_ES
dc.description.references Zubiaga A, Vicente IS, Gamallo P, Campos JRP, Loinaz IA, Aranberri N, Ezeiza A Fresno-Fernández V (2014) Overview of tweetlid: Tweet language identification at SEPLN 2014. In: Proceedings of the Tweet language identification workshop co-located with 30th conference of the Spanish society for natural language processing. TweetLID@SEPLN 2014, Girona, Spain, 16 Sept 2014, pp 1–11 es_ES
dc.description.references Zubiaga A, San Vicente I, Gamallo P, Pichel JR, Alegria I, Aranberri N, Ezeiza A, Fresno V (2015) TweetLID: a benchmark for tweet language identification. J Lang Res Eval. Springer, pp 1–38. doi: 10.1007/s10579-015-9317-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem