Mostrar el registro sencillo del ítem
dc.contributor.author | Mora-Sero, Iván | es_ES |
dc.contributor.author | Bertoluzzi, Luca | es_ES |
dc.contributor.author | González-Pedro, Victoria | es_ES |
dc.contributor.author | Gimenez, Sixto | es_ES |
dc.contributor.author | Fabregat-Santiago, Francisco | es_ES |
dc.contributor.author | Kemp, Kyle W. | es_ES |
dc.contributor.author | Sargent, Edward H. | es_ES |
dc.contributor.author | Bisquert, Juan | es_ES |
dc.date.accessioned | 2017-05-18T08:29:14Z | |
dc.date.available | 2017-05-18T08:29:14Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.uri | http://hdl.handle.net/10251/81357 | |
dc.description.abstract | [EN] Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. | es_ES |
dc.description.sponsorship | We thank the following agencies for support of this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008) and Universitat Jaume I project 12I361.01/1. EHS and KWK acknowledge the Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST) and the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2012T100100740). | |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heterojunction solar cells | es_ES |
dc.subject | Photovoltaic cells | es_ES |
dc.subject | Electron injection | es_ES |
dc.subject | Nanocrystals | es_ES |
dc.subject | Semiconductors | es_ES |
dc.subject | Passivation | es_ES |
dc.subject | Conversion | es_ES |
dc.subject | Interface | es_ES |
dc.subject | Transport | es_ES |
dc.subject | Layers | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms3272 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F008/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//12I361.01%2F1/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/KAUST//KUS-11-009-21/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MKE//2012T100100740/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mora-Sero, I.; Bertoluzzi, L.; González-Pedro, V.; Gimenez, S.; Fabregat-Santiago, F.; Kemp, KW.; Sargent, EH.... (2013). Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications. 4:3272-3272. https://doi.org/10.1038/ncomms3272 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/ncomms3272 | es_ES |
dc.description.upvformatpinicio | 3272 | es_ES |
dc.description.upvformatpfin | 3272 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.relation.senia | 288041 | es_ES |
dc.identifier.pmid | 23934367 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Universitat Jaume I | |
dc.contributor.funder | King Abdullah University of Science and Technology | |
dc.contributor.funder | Ministry of Knowledge Economy, Corea del Sur | |
dc.description.references | Grätzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012). | es_ES |
dc.description.references | Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008). | es_ES |
dc.description.references | Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011). | es_ES |
dc.description.references | Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nano 7, 577–582 (2012). | es_ES |
dc.description.references | Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011). | es_ES |
dc.description.references | Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013). | es_ES |
dc.description.references | Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011). | es_ES |
dc.description.references | Jaegermann, W., Klein, A. & Mayer, T. Interface engineering of inorganic thin-film solar cells—materials-science challenges for advanced physical concepts. Adv. Mater. 21, 4196–4206 (2009). | es_ES |
dc.description.references | Sarasqueta, G., Choudhury, K. R., Subbiah, J. & So, F. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv. Funct. Mater. 21, 167–171 (2010). | es_ES |
dc.description.references | Brown, P. R. et al. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11, 2955–2961 (2011). | es_ES |
dc.description.references | Etgar, L. et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 6, 3092–3099 (2012). | es_ES |
dc.description.references | Gao, J. et al. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263–3266 (2011). | es_ES |
dc.description.references | Leschkies, K. S., Beatty, T. J., Kang, M. S., Norris, D. J. & Aydil, E. S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 3, 3638–3648 (2009). | es_ES |
dc.description.references | Gärtner, W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959). | es_ES |
dc.description.references | Tang, J. et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2011). | es_ES |
dc.description.references | Willis, S. M., Cheng, C., Assender, H. E. & Watt, A. A. R. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 12, 1522–1526 (2012). | es_ES |
dc.description.references | Zhitomirsky, D. et al. N-Type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181–6185 (2012). | es_ES |
dc.description.references | Bisquert, J., Cahen, D., Rühle, S., Hodes, G. & Zaban, A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J. Phys. Chem. B 108, 8106–8118 (2004). | es_ES |
dc.description.references | Bisquert, J. & Garcia-Belmonte, G. On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J. Phys. Chem. Lett. 2, 1950–1964 (2011). | es_ES |
dc.description.references | Ratcliff, E. L., Zacher, B. & Armstrong, N. R. Selective interlayers and contacts in organic photovoltaic cells. J. Phys. Chem. Lett. 2, 1337–1350 (2011). | es_ES |
dc.description.references | Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007). | es_ES |
dc.description.references | Hodes, G., Howell, I. D. J. & Peter, L. M. Nanocristallyne photoelectrochemical cells. A new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992). | es_ES |
dc.description.references | Bisquert, J., Garcia-Belmonte, G. & Fabregat Santiago, F. Modeling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J. Solid State Electr 3, 337–347 (1999). | es_ES |
dc.description.references | Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003). | es_ES |
dc.description.references | Guyot-Sionnest, P. Charging colloidal quantum dots by electrochemistry. Microchim. Acta 160, 309–314 (2008). | es_ES |
dc.description.references | Vanmaekelbergh, D. Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. Nano Today 6, 419–437 (2011). | es_ES |
dc.description.references | Vanmaekelbergh, D. & Liljerorth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005). | es_ES |
dc.description.references | Roest, A. L., Kelly, J. J. & Vanmaekelbergh, D. Coulomb blockade of electron transport in a ZnO quantum-dot solid. Appl. Phys. Lett. 83, 5530–5532 (2003). | es_ES |
dc.description.references | Roest, A. L., Kelly, J. J., Vanmaekelbergh, D. & Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 89, 036801 (2002). | es_ES |
dc.description.references | Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010). | es_ES |
dc.description.references | Hyun, B.-R. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008). | es_ES |
dc.description.references | Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012). | es_ES |
dc.description.references | Gross, D. et al. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010). | es_ES |
dc.description.references | Abkowitz, M., Facci, J. S. & Rehm, J. Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors. J. Appl. Phys. 83, 2670–2676 (1998). | es_ES |
dc.description.references | Meyer, J. & Kahn, A. Electronic structure of molybdenum-oxide films and associated charge injection mechanisms in organic devices. J. Photon. Energy 1, 011109 (2011). | es_ES |
dc.description.references | Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). | es_ES |
dc.description.references | Scholes, G. D., Jones, M. & Kumar, S. Energetics of photoinduced electron-transfer reactions decided by quantum confinement. J. Phys. Chem. C 111, 13777–13785 (2007). | es_ES |
dc.description.references | Bässler, H., Arkhipov, V. I., Emelianova, E. V. & Tak, Y. H. Charge injection into light-emitting diodes: theory and experiment. J. Appl. Phys. 84, 848–856 (1998). | es_ES |
dc.description.references | Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001). | es_ES |
dc.description.references | Scott, J. C. & Malliaras, G. G. Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115 (1999). | es_ES |
dc.description.references | Shen, Y., Hosseini, A. R., Wong, M. H. & Malliaras, G. G. How to make ohmic contacts to organic semiconductors. Chem. Phys. Chem. 5, 16–25 (2004). | es_ES |
dc.description.references | Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997). | es_ES |
dc.description.references | Ding, H. & Gao, Y. Au/LiF/tris(8-hydroxyquinoline) aluminum interfaces. Appl. Phys. Lett. 91, 172107 (2007). | es_ES |
dc.description.references | Rodriguez, J. A., Jirsak, T., Chaturvedi, S. & Dvorak, J. Chemistry of SO2 and NO2 on ZnO(0001)-Zn and ZnO powders: changes in reactivity with surface structure and composition. J. Mol. Catal. A Chem. 167, 47–57 (2001). | es_ES |