- -

Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora-Sero, Iván es_ES
dc.contributor.author Bertoluzzi, Luca es_ES
dc.contributor.author González-Pedro, Victoria es_ES
dc.contributor.author Gimenez, Sixto es_ES
dc.contributor.author Fabregat-Santiago, Francisco es_ES
dc.contributor.author Kemp, Kyle W. es_ES
dc.contributor.author Sargent, Edward H. es_ES
dc.contributor.author Bisquert, Juan es_ES
dc.date.accessioned 2017-05-18T08:29:14Z
dc.date.available 2017-05-18T08:29:14Z
dc.date.issued 2013-08
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/81357
dc.description.abstract [EN] Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells. es_ES
dc.description.sponsorship We thank the following agencies for support of this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008) and Universitat Jaume I project 12I361.01/1. EHS and KWK acknowledge the Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST) and the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2012T100100740).
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterojunction solar cells es_ES
dc.subject Photovoltaic cells es_ES
dc.subject Electron injection es_ES
dc.subject Nanocrystals es_ES
dc.subject Semiconductors es_ES
dc.subject Passivation es_ES
dc.subject Conversion es_ES
dc.subject Interface es_ES
dc.subject Transport es_ES
dc.subject Layers es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms3272
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00007/ES/Hybrid Optoelectronic and Photovoltaic Devices for Renewable Energy/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//12I361.01%2F1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/KAUST//KUS-11-009-21/
dc.relation.projectID info:eu-repo/grantAgreement/MKE//2012T100100740/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mora-Sero, I.; Bertoluzzi, L.; González-Pedro, V.; Gimenez, S.; Fabregat-Santiago, F.; Kemp, KW.; Sargent, EH.... (2013). Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications. 4:3272-3272. https://doi.org/10.1038/ncomms3272 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms3272 es_ES
dc.description.upvformatpinicio 3272 es_ES
dc.description.upvformatpfin 3272 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.relation.senia 288041 es_ES
dc.identifier.pmid 23934367
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Jaume I
dc.contributor.funder King Abdullah University of Science and Technology
dc.contributor.funder Ministry of Knowledge Economy, Corea del Sur
dc.description.references Grätzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012). es_ES
dc.description.references Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008). es_ES
dc.description.references Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011). es_ES
dc.description.references Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nano 7, 577–582 (2012). es_ES
dc.description.references Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011). es_ES
dc.description.references Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013). es_ES
dc.description.references Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011). es_ES
dc.description.references Jaegermann, W., Klein, A. & Mayer, T. Interface engineering of inorganic thin-film solar cells—materials-science challenges for advanced physical concepts. Adv. Mater. 21, 4196–4206 (2009). es_ES
dc.description.references Sarasqueta, G., Choudhury, K. R., Subbiah, J. & So, F. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv. Funct. Mater. 21, 167–171 (2010). es_ES
dc.description.references Brown, P. R. et al. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11, 2955–2961 (2011). es_ES
dc.description.references Etgar, L. et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 6, 3092–3099 (2012). es_ES
dc.description.references Gao, J. et al. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263–3266 (2011). es_ES
dc.description.references Leschkies, K. S., Beatty, T. J., Kang, M. S., Norris, D. J. & Aydil, E. S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 3, 3638–3648 (2009). es_ES
dc.description.references Gärtner, W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959). es_ES
dc.description.references Tang, J. et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2011). es_ES
dc.description.references Willis, S. M., Cheng, C., Assender, H. E. & Watt, A. A. R. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 12, 1522–1526 (2012). es_ES
dc.description.references Zhitomirsky, D. et al. N-Type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181–6185 (2012). es_ES
dc.description.references Bisquert, J., Cahen, D., Rühle, S., Hodes, G. & Zaban, A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J. Phys. Chem. B 108, 8106–8118 (2004). es_ES
dc.description.references Bisquert, J. & Garcia-Belmonte, G. On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J. Phys. Chem. Lett. 2, 1950–1964 (2011). es_ES
dc.description.references Ratcliff, E. L., Zacher, B. & Armstrong, N. R. Selective interlayers and contacts in organic photovoltaic cells. J. Phys. Chem. Lett. 2, 1337–1350 (2011). es_ES
dc.description.references Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007). es_ES
dc.description.references Hodes, G., Howell, I. D. J. & Peter, L. M. Nanocristallyne photoelectrochemical cells. A new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992). es_ES
dc.description.references Bisquert, J., Garcia-Belmonte, G. & Fabregat Santiago, F. Modeling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J. Solid State Electr 3, 337–347 (1999). es_ES
dc.description.references Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003). es_ES
dc.description.references Guyot-Sionnest, P. Charging colloidal quantum dots by electrochemistry. Microchim. Acta 160, 309–314 (2008). es_ES
dc.description.references Vanmaekelbergh, D. Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. Nano Today 6, 419–437 (2011). es_ES
dc.description.references Vanmaekelbergh, D. & Liljerorth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005). es_ES
dc.description.references Roest, A. L., Kelly, J. J. & Vanmaekelbergh, D. Coulomb blockade of electron transport in a ZnO quantum-dot solid. Appl. Phys. Lett. 83, 5530–5532 (2003). es_ES
dc.description.references Roest, A. L., Kelly, J. J., Vanmaekelbergh, D. & Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 89, 036801 (2002). es_ES
dc.description.references Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010). es_ES
dc.description.references Hyun, B.-R. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008). es_ES
dc.description.references Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012). es_ES
dc.description.references Gross, D. et al. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010). es_ES
dc.description.references Abkowitz, M., Facci, J. S. & Rehm, J. Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors. J. Appl. Phys. 83, 2670–2676 (1998). es_ES
dc.description.references Meyer, J. & Kahn, A. Electronic structure of molybdenum-oxide films and associated charge injection mechanisms in organic devices. J. Photon. Energy 1, 011109 (2011). es_ES
dc.description.references Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). es_ES
dc.description.references Scholes, G. D., Jones, M. & Kumar, S. Energetics of photoinduced electron-transfer reactions decided by quantum confinement. J. Phys. Chem. C 111, 13777–13785 (2007). es_ES
dc.description.references Bässler, H., Arkhipov, V. I., Emelianova, E. V. & Tak, Y. H. Charge injection into light-emitting diodes: theory and experiment. J. Appl. Phys. 84, 848–856 (1998). es_ES
dc.description.references Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001). es_ES
dc.description.references Scott, J. C. & Malliaras, G. G. Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115 (1999). es_ES
dc.description.references Shen, Y., Hosseini, A. R., Wong, M. H. & Malliaras, G. G. How to make ohmic contacts to organic semiconductors. Chem. Phys. Chem. 5, 16–25 (2004). es_ES
dc.description.references Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997). es_ES
dc.description.references Ding, H. & Gao, Y. Au/LiF/tris(8-hydroxyquinoline) aluminum interfaces. Appl. Phys. Lett. 91, 172107 (2007). es_ES
dc.description.references Rodriguez, J. A., Jirsak, T., Chaturvedi, S. & Dvorak, J. Chemistry of SO2 and NO2 on ZnO(0001)-Zn and ZnO powders: changes in reactivity with surface structure and composition. J. Mol. Catal. A Chem. 167, 47–57 (2001). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem