Mostrar el registro sencillo del ítem
dc.contributor.author | Micó Vicent, Bárbara | es_ES |
dc.contributor.author | Jordán Núñez, Jorge | es_ES |
dc.contributor.author | Martinez Verdu, Francisco Miguel | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2017-05-18T08:30:23Z | |
dc.date.available | 2017-05-18T08:30:23Z | |
dc.date.issued | 2017-01 | |
dc.identifier.issn | 0022-2461 | |
dc.identifier.uri | http://hdl.handle.net/10251/81358 | |
dc.description.abstract | Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis process | es_ES |
dc.description.sponsorship | We thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Materials Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Colorimetric analysis | es_ES |
dc.subject | Coupling agents | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Nanostructured materials | es_ES |
dc.subject | Surface active agents | es_ES |
dc.subject | Vat dyes | es_ES |
dc.subject | Bio-nanocomposite materials | es_ES |
dc.subject | Biodegradable resins | es_ES |
dc.subject | Optimal generation | es_ES |
dc.subject | Optimal properties | es_ES |
dc.subject | Performance optimisation | es_ES |
dc.subject | Structural modifiers | es_ES |
dc.subject | Surface modifiers | es_ES |
dc.subject | Synthesis process | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10853-016-0384-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-30090-C02-02/ES/NUEVOS METODOS DE MEJORA DE LA CORRELACION INSTRUMENTAL Y VISUAL DE MATERIALES ESPECIALES E INNOVADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-68514-R/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Micó Vicent, B.; Jordán Núñez, J.; Martinez Verdu, FM.; Balart Gimeno, RA. (2017). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science. 52(2):889-898. https://doi.org/10.1007/s10853-016-0384-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10853-016-0384-8 | es_ES |
dc.description.upvformatpinicio | 889 | es_ES |
dc.description.upvformatpfin | 898 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 327974 | es_ES |
dc.identifier.eissn | 1573-4803 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi: 10.1016/j.compscitech.2010.05.022 | es_ES |
dc.description.references | Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi: 10.1016/j.compscitech.2012.01.005 | es_ES |
dc.description.references | Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi: 10.1016/j.compscitech.2007.01.030 | es_ES |
dc.description.references | Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi: 10.1016/j.eurpolymj.2007.03.013 | es_ES |
dc.description.references | Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi: 10.1016/j.tca.2006.11.002 | es_ES |
dc.description.references | Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi: 10.1023/a:1022308705231 | es_ES |
dc.description.references | Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi: 10.1002/(sici)1099-1018(200001/02)24:1<45:aid-fam719>3.0.co;2-s | es_ES |
dc.description.references | Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002 | es_ES |
dc.description.references | Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi: 10.1016/j.compositesb.2015.03.061 | es_ES |
dc.description.references | LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi: 10.1016/s0169-1317(99)00017-4 | es_ES |
dc.description.references | Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666 | es_ES |
dc.description.references | Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi: 10.1007/s00289-008-0018-7 | es_ES |
dc.description.references | Beltrán MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi: 10.1016/j.clay.2013.08.028 | es_ES |
dc.description.references | Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi: 10.1016/j.compscitech.2011.11.018 | es_ES |
dc.description.references | Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi: 10.1016/j.tifs.2010.07.008 | es_ES |
dc.description.references | Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi: 10.1016/j.clay.2013.09.004 | es_ES |
dc.description.references | Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi: 10.1016/j.polymer.2005.06.101 | es_ES |
dc.description.references | Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi: 10.1002/pi.2310 | es_ES |
dc.description.references | Montgomery DC (2008) Design and analysis of experiments. Wiley, Hoboken | es_ES |
dc.description.references | Baena-Murillo E, Micó-Vicent B, Martínez-Verdú FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813 | es_ES |
dc.description.references | Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi: 10.1016/j.clay.2011.09.001 | es_ES |
dc.description.references | Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi: 10.1016/s0021-9797(03)00602-7 | es_ES |
dc.description.references | Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi: 10.1016/j.clay.2011.08.002 | es_ES |
dc.description.references | Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi: 10.1016/j.msea.2009.07.023 | es_ES |
dc.description.references | Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi: 10.1016/j.watres.2004.12.008 | es_ES |
dc.description.references | Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi: 10.1180/claymin.1983.018.4.10 | es_ES |
dc.description.references | Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi: 10.1016/j.jcis.2009.04.065 | es_ES |
dc.description.references | Capilla P, Pujol J (2002) Fundamentos de Colorimetría. Universitat de Valencia | es_ES |
dc.description.references | Gilabert EJ, Verdú FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofísico, pp 185–221 | es_ES |
dc.description.references | Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi: 10.1016/j.jcis.2004.03.055 | es_ES |