- -

A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Micó Vicent, Bárbara es_ES
dc.contributor.author Jordán Núñez, Jorge es_ES
dc.contributor.author Martinez Verdu, Francisco Miguel es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2017-05-18T08:30:23Z
dc.date.available 2017-05-18T08:30:23Z
dc.date.issued 2017-01
dc.identifier.issn 0022-2461
dc.identifier.uri http://hdl.handle.net/10251/81358
dc.description.abstract Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis process es_ES
dc.description.sponsorship We thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Materials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Colorimetric analysis es_ES
dc.subject Coupling agents es_ES
dc.subject Nanocomposites es_ES
dc.subject Nanostructured materials es_ES
dc.subject Surface active agents es_ES
dc.subject Vat dyes es_ES
dc.subject Bio-nanocomposite materials es_ES
dc.subject Biodegradable resins es_ES
dc.subject Optimal generation es_ES
dc.subject Optimal properties es_ES
dc.subject Performance optimisation es_ES
dc.subject Structural modifiers es_ES
dc.subject Surface modifiers es_ES
dc.subject Synthesis process es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10853-016-0384-8
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-30090-C02-02/ES/NUEVOS METODOS DE MEJORA DE LA CORRELACION INSTRUMENTAL Y VISUAL DE MATERIALES ESPECIALES E INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-68514-R/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Micó Vicent, B.; Jordán Núñez, J.; Martinez Verdu, FM.; Balart Gimeno, RA. (2017). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science. 52(2):889-898. https://doi.org/10.1007/s10853-016-0384-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10853-016-0384-8 es_ES
dc.description.upvformatpinicio 889 es_ES
dc.description.upvformatpfin 898 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 327974 es_ES
dc.identifier.eissn 1573-4803
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi: 10.1016/j.compscitech.2010.05.022 es_ES
dc.description.references Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi: 10.1016/j.compscitech.2012.01.005 es_ES
dc.description.references Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi: 10.1016/j.compscitech.2007.01.030 es_ES
dc.description.references Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi: 10.1016/j.eurpolymj.2007.03.013 es_ES
dc.description.references Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi: 10.1016/j.tca.2006.11.002 es_ES
dc.description.references Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi: 10.1023/a:1022308705231 es_ES
dc.description.references Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi: 10.1002/(sici)1099-1018(200001/02)24:1<45:aid-fam719>3.0.co;2-s es_ES
dc.description.references Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002 es_ES
dc.description.references Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi: 10.1016/j.compositesb.2015.03.061 es_ES
dc.description.references LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi: 10.1016/s0169-1317(99)00017-4 es_ES
dc.description.references Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666 es_ES
dc.description.references Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi: 10.1007/s00289-008-0018-7 es_ES
dc.description.references Beltrán MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi: 10.1016/j.clay.2013.08.028 es_ES
dc.description.references Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi: 10.1016/j.compscitech.2011.11.018 es_ES
dc.description.references Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi: 10.1016/j.tifs.2010.07.008 es_ES
dc.description.references Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi: 10.1016/j.clay.2013.09.004 es_ES
dc.description.references Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi: 10.1016/j.polymer.2005.06.101 es_ES
dc.description.references Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi: 10.1002/pi.2310 es_ES
dc.description.references Montgomery DC (2008) Design and analysis of experiments. Wiley, Hoboken es_ES
dc.description.references Baena-Murillo E, Micó-Vicent B, Martínez-Verdú FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813 es_ES
dc.description.references Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi: 10.1016/j.clay.2011.09.001 es_ES
dc.description.references Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi: 10.1016/s0021-9797(03)00602-7 es_ES
dc.description.references Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi: 10.1016/j.clay.2011.08.002 es_ES
dc.description.references Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi: 10.1016/j.msea.2009.07.023 es_ES
dc.description.references Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi: 10.1016/j.watres.2004.12.008 es_ES
dc.description.references Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi: 10.1180/claymin.1983.018.4.10 es_ES
dc.description.references Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi: 10.1016/j.jcis.2009.04.065 es_ES
dc.description.references Capilla P, Pujol J (2002) Fundamentos de Colorimetría. Universitat de Valencia es_ES
dc.description.references Gilabert EJ, Verdú FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofísico, pp 185–221 es_ES
dc.description.references Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi: 10.1016/j.jcis.2004.03.055 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem