- -

Computational design of host transcription-factors sets whose misregulation mimics the transcriptomic effect of viral infections

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational design of host transcription-factors sets whose misregulation mimics the transcriptomic effect of viral infections

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrera Montesinos, Javier es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2017-05-18T11:28:59Z
dc.date.available 2017-05-18T11:28:59Z
dc.date.issued 2012-12-19
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/81387
dc.description.abstract [EN] The molecular mechanisms underlying viral pathogenesis are yet poorly understood owed to the large number of factors involved and the complexity of their interactions. Could we identify a minimal set of host transcription factors (TF) whose misregulation would result in the transcriptional profile characteristic of infected cells in absence of the virus? How many of such sets exist? Are all orthogonal or share critical TFs involved in specific biological functions? We have developed a computational methodology that uses a quantitative model of the transcriptional regulatory network (TRN) of Arabidopsis thaliana to explore the landscape of all possible re-engineered TRNs whose transcriptomic profiles mimic those observed in infected plants. We found core sets containing between six and 34 TFs, depending on the virus, whose in silico knockout or overexpression in the TRN resulted in transcriptional profiles that minimally deviate from those observed in infected plants. es_ES
dc.description.sponsorship We thank J.A. Daros, M. A. Fares and G. Rodrigo for fruitful comments and suggestions and O. Voinnet and C. Llave for sharing with us the TCV and TRV transcriptomic data, respectively. This research was supported by grant BFU2009-06993 by the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion to S.F.E. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject GENE-EXPRESSION PROFILE es_ES
dc.subject ARABIDOPSIS-THALIANA es_ES
dc.subject VIRUS-INFECTION es_ES
dc.subject MOSAIC-VIRUS es_ES
dc.subject GEMINIVIRUS INFECTION es_ES
dc.subject PATHOGEN INTERACTIONS es_ES
dc.subject ADENOSINE KINASE es_ES
dc.subject SYSTEMS BIOLOGY es_ES
dc.subject L2 PROTEINS es_ES
dc.subject NETWORKS es_ES
dc.title Computational design of host transcription-factors sets whose misregulation mimics the transcriptomic effect of viral infections es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep01006
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Carrera Montesinos, J.; Elena Fito, SF. (2012). Computational design of host transcription-factors sets whose misregulation mimics the transcriptomic effect of viral infections. Scientific Reports. 2:1-10. https://doi.org/10.1038/srep01006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep01006 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.relation.senia 232220 es_ES
dc.identifier.pmid 23256040 en_EN
dc.identifier.pmcid PMC3525979
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11, 539–48 (2010). es_ES
dc.description.references Jenner, R. G. & Young, R. A. Insights into host responses against pathoghens from transcriptional profiling. Nat Rev Microbiol 3, 281–94 (2005). es_ES
dc.description.references Andeweg, A. C., Haagmans, B. L. & Osterhaus, A. D. Virogenomics: the virus-host interaction revisited. Curr Opin Microbiol 11, 461–6 (2008). es_ES
dc.description.references Elena, S. F., Carrera, J. & Rodrigo, G. A systems biology approach to the evolution of plant-virus interactions. Curr Opin Plant Biol 14, 372–7 (2011). es_ES
dc.description.references Friedel, C. C. & Haas, J. Virus-host interactomes and global models of virus-infected cells. Trends Microbiol 19, 501–8 (2011). es_ES
dc.description.references Peng, X. et al. Virus-host interactions: from systems biology to translational research. Curr Opin Microbiol 12, 432–8 (2009). es_ES
dc.description.references Tan, S. L., Ganji, G., Paeper, B., Proll, S. & Katze, M. G. Systems biology and the host response to viral infection. Nat Biotech 25, 1383–9 (2007). es_ES
dc.description.references Wise, R. P., Moscou, M. J., Bogdanove, A. J. & Whitham, S. A. Transcript profiling in host-pathogen interactions. Annu Rev Phytopathol 43, 329–69 (2007). es_ES
dc.description.references Agudelo-Romero, P. et al. Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 5, 92 (2008). es_ES
dc.description.references Agudelo-Romero, P., Carbonell, P., Pérez-Amador, M. A. & Elena, S. F. Virus adaptation by manipulation of host's gene expression. PLoS ONE 3, e2397 (2008). es_ES
dc.description.references Ascencio-Ibáñez, J. et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148, 436–54 (2008). es_ES
dc.description.references Babu, M., Griffiths, J. S., Huang, T. S. & Wang, A. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 9, 325 (2008). es_ES
dc.description.references Espinoza, C., Medina, C., Somerville, S. & Arce-Jonhson, P. Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58, 3197–212 (2007). es_ES
dc.description.references Golem, S. & Culver, J. N. Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant-Microb Interact 16, 681–8 (2003). es_ES
dc.description.references Ishihara, T. et al. Comparative analysis of expressed sequence tags in resistant and susceptible ecotypes of Arabidopsis thaliana infected with Cucumber mosaic virus. Plant Cell Physiol 45, 470–80 (2004). es_ES
dc.description.references Yang, C. et al. Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant-Microb Interact 20, 358–70 (2007). es_ES
dc.description.references Whitham, S. A., Yang, C. & Goodin, M. M. Global impact: elucidating plant responses to viral infection. Mol Plant-Microb Interact 11, 1207–15 (2006). es_ES
dc.description.references Whitham, S. A. & Wang, Y. Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7, 365–71 (2004). es_ES
dc.description.references Rodrigo, G. et al. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS ONE 7, e40526 (2012). es_ES
dc.description.references Bushman, F. D. et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 5, e1000437 (2009). es_ES
dc.description.references Calderwood, M. A. et al. Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA 104, 7606–11 (2007). es_ES
dc.description.references De Chassey, B. et al. Hepatitis C virus infection protein network. Mol Syst Biol 4, 230 (2008). es_ES
dc.description.references MacPherson, J. I., Dickerson, J. E., Pinney, J. W. & Robertson, D. L. Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. PLoS Comput Biol 6, e1000863 (2010). es_ES
dc.description.references Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–42 (2006). es_ES
dc.description.references Watanabe, T., Watanabe, S. & Kawaoka, Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7, 427–39 (2010). es_ES
dc.description.references Wuchty, S., Siwo, G. & Ferdig, M. T. Viral organization of human proteins. PLoS ONE 5, e11796 (2010). es_ES
dc.description.references Di Bernardo, D. et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotech 23, 377–83 (2005). es_ES
dc.description.references Carrera, J., Rodrigo, G., Jaramillo, A. & Elena, S. F. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions. Genome Biol 10, R96 (2009). es_ES
dc.description.references Carrera, J., Elena, S. F. & Jaramillo, A. Computational design of genomic transcriptional networks with adaptation to varying environments. Proc Natl Acad Sci USA 109, 15277–82 (2012). es_ES
dc.description.references Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99, 15112–7 (2002). es_ES
dc.description.references Burgard, A. P., Pharkya, P. & Maranas, C. D. OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84, 647–57 (2003). es_ES
dc.description.references Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–5 (2008). es_ES
dc.description.references Kitney, R. & Freemont, P. Synthetic biology – the state of play. FEBS Lett 586, 2029–36 (2012). es_ES
dc.description.references Rodrigo, R., Carrera, J., Landrain, T. E. & Jaramillo, A. Perspectives on the automatic design of regulatory systems for synthetic biology. FEBS Lett 586, 2037–42 (2012). es_ES
dc.description.references Carrera, J. et al. Fine-tuning tomato agronomic properties by computational genome redesign. PLoS Comput Biol 8, e1002528 (2012). es_ES
dc.description.references Carrera, J., Rodrigo, G. & Jaramillo, A. Towards the automated engineering of a synthetic genome. Mol Biosyst 5, 733–43 (2009). es_ES
dc.description.references Wang, H., Hao, L., Shung, C. Y., Sunter, G. & Bisaro, D. M. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15, 3020–32 (2003). es_ES
dc.description.references Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C. & Bisaro, D. M. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79, 7410–8 (2005). es_ES
dc.description.references Baliji, S., Lacatus, G. & Sunter, G. The interaction between pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology 402, 238–47 (2010). es_ES
dc.description.references Shen, W. & Hanley-Bowdoin, L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol 142, 1642–55 (2006). es_ES
dc.description.references Piroux, N., Saunders, K., Page, A. & Stanley, J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinosteroid signaling pathway. Virology 362, 428–40 (2007). es_ES
dc.description.references Vogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G. & Thomashow, M. F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41, 195–211 (2005). es_ES
dc.description.references Lee, C. M. & Thomashow, M. F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109, 1504–9 (2012). es_ES
dc.description.references Hsieh, T. F. et al. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108, 1755–62 (2011). es_ES
dc.description.references Hirai, M. Y. et al. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104, 6478–83 (2007). es_ES
dc.description.references Sønderby, I. E., Burow, M., Rowe, H. C., Kliebenstein, D. J. & Halkier, B. A. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol 153, 348–63 (2010). es_ES
dc.description.references Sønderby, I. E., Geu-Flores, F. & Halkier, B. A. Biosynthesis of glucosinolates – gene discovery and beyond. Trends Plant Sci 15, 283–90 (2010). es_ES
dc.description.references Burow, M., Halkier, B. A. & Kliebenstein, D. J. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness. Curr Opin Plant Biol 13, 347–52 (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem