- -

Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

Show full item record

Sardanyes Cayuela, J.; Simó, C.; Martínez, R.; Solé, RV.; Elena Fito, SF. (2014). Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Scientific Reports. (4):1-9. doi:10.1038/srep04625

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81389

Files in this item

Item Metadata

Title: Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a ...[+]
Subjects: Single-nucleotide substitutions , Immunodeficiency-virus type-1 , Vesicular stomatitis-virus , Tobacco-ETCH-virus , Error threshold , RNA virus , Deleterious mutations , Muller ratchet , Human cancers , Evolution
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep04625
Publisher:
Nature Publishing Group
Publisher version: http://doi.org/10.1038/srep04625
Thanks:
We thank the members of the Complex Systems Lab as well as Phillip Gerrish, Susanna C. Manrubia, and Ernest Fontich for their helpful comments. The authors acknowledge the computing facilities of the Dynamical Systems Group ...[+]
Type: Artículo

References

Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523 (1971).

Eigen, M. & Schuster, P. The hypercycle. A principle of natural self-organization [Eigen, M. & Schuster, P. (eds.)] (Springer-Verlag, Berlin, 1979).

Schuster, P. Evolution on “realistic” fitness landscapes. Phase transitions, strong quasispecies and neutrality. Santa Fe Institute Working Paper #12-06-006, 1–94 (2012). [+]
Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523 (1971).

Eigen, M. & Schuster, P. The hypercycle. A principle of natural self-organization [Eigen, M. & Schuster, P. (eds.)] (Springer-Verlag, Berlin, 1979).

Schuster, P. Evolution on “realistic” fitness landscapes. Phase transitions, strong quasispecies and neutrality. Santa Fe Institute Working Paper #12-06-006, 1–94 (2012).

Domingo, E., Webster, E. & Holland, J. J. Origin and evolution of viruses [Domingo, E., Parrish, C. R. & Holland, J. J. (eds.)] (Academic, San Diego, USA, 1999).

Wilke, C. O. Quasispecies theory in the context of population genetics. BMC Evol. Biol. 5, 44–51 (2005).

Eigen, M., McCaskill, J. & Schuster, P. The Molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989).

Domingo, E., Biebricher, C., Eigen, M. & Holland, J. J. Quasispecies and RNA virus evolution: Principles and consequences (Landes Bioscience, Austin, TX, 2001).

Manrubia, S. C., Domingo, E. & Lázaro, E. Pathways to extinction: beyond the error threshold. Phil. Trans. R. Soc. B 365, 1943–1952 (2010).

Franz, S. & Peliti, L. Error threshold in simple landscapes. J. Phys. A: Math. Gen. 30, 4481–4487 (1997).

Satorras, R. P. & Solé, R. V. Field theory for a reaction-diffusion model of quasispecies dynamics. Phys. Rev. E 64, 051909278 (2001).

Saakian, D. B. & Chin-Kun, H. Exact solution of the Eigen model with general fitness functions and degradation rates. Proc. Natl. Acad. Sci. U.S.A. 103, 4935–4939 (2005).

Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987).

Sanjuán, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl. Acad. Sci. U.S.A. 101, 8396–8401 (2004).

Carrasco, P., de la Iglesia, F. & Elena, S. F. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J. Virol. 81, 12979–12984 (2007).

Saakian, D. B., Muñoz, E., Chin-Kun, H. & Deem, M. W. Quasispecies theory for multiple-peak fitness landscapes. Phys. Rev. E 73, 041913 (2006).

Sardanyés, J., Solé, R. V. & Elena, S. F. Simple quasispecies models for the survival-of-the-flattest effect: the role of space. J. theor. Biol. 250, 560–568 (2006).

Wilke, C. O. Selection for fitness versus selection for robustness in RNA secondary structure folding. Evolution 55, 2412–2420 (2001).

McCaskill, J. S. & Altemeyer, S. Error threshold for spatially resolved evolution in the quasispecies model. Phys. Rev. Lett. 86, 5819–5822 (2001).

Toyabe, S. & Sano, M. Spatial suppression of error catastrophe in a growing pattern. Physica D 230, 1–8 (2005).

Sardanyés, J. & Elena, S. F. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLOS ONE 6, e24884 (2011).

Sardanyés, J. & Elena, S. F. Error threshold in RNA quasispecies models with complementation. J. Theor. Biol. 265, 278–286 (2010).

Iranzo, J. & Manrubia, S. C. Evolutionary dynamics of genome segmentation in multipartite viruses. Proc. R. Soc. B 279, 3812–3819 (2012).

Sardanyés, J., Solé, R. V. & Elena, S. F. Replication mode and landscape topology differentially affect RNA virus mutational load and robustness. J. Virol. 83, 12579–12589 (2009).

Sanjuán, R. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Phil. Trans. R. Soc. B 365, 1975 (2010).

Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

Manrubia, S. C. Modelling viral evolution and adaptation: challenges and rewards. Curr. Op. Virol. 2, 531–537 (2012).

Keightley, P. D. & Lynch, M. Toward a realistic model of mutations affecting fitness. Evolution 57, 683–685 (2003).

Keightley, P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138, 1315–1322 (1994).

Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol. Lett. 2, 426–430 (2006).

Imhof, M. & Schlötterer, C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. U.S.A. 98, 1113–1117 (2001).

Elena, S. F. & Moya, A. Rate of deleterious mutation and the distribution of its effects on fitness in Vesicular stomatitis virus. J. Evol. Biol. 12, 1078–1088 (1999).

van Opiijnen, T., Boerlijst, M. C. & Berkhout, B. Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80, 6678–6685 (2006).

Orr, H. A. The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003).

Antoneli, F., Bosco, F., Castro, D. & Janini, L. M. Virus replication as a phenotypic version of polynucleotide evolution. Bull. Math. Biol. 75, 602–628 (2013).

Perales, C., Iranzo, J., Manrubia, S. & Domingo, E. The impact of quasispecies dynamics on the use of therapeutics. Trends in Microbiol. 20, 595–603 (2012).

Schuster, P. Mathematical modeling of evolution. Solved and open problems. Theory Biosci. 130, 71–89 (2011).

Lorenz, D. M., Park, J.-M. & Deem, M. W. Evolutionary processes in finite populations. Phys. Rev. E 87, 022704 (2013).

Bull, J. J., Meyers, L. A. & Lachmann, M. Quasispecies made simple. PLOS Comput. Biol. 1, e61 (2005).

Bull, J. J., Sanjuán, R. & Wilke, C. O. Theory of lethal mutagenesis for viruses. J. Virol. 81, 2930–2939 (2007).

Wylie, C. S. & Shakhnovic, E. L. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation. PLOS Comput. Biol. 8, e1002609 (2012).

Aguirre, J., Buldú, J. M. & Manrubia, S. C. A trade-off between neutrality and adaptability limits the optimization of viral quasispecies. J. Theor. Biol. 261, 148–155 (2001).

Cuesta, J. A., Aguirre, J., Capitán, J. A. & Manrubia, S. C. Struggle for space: viral extinction through competition for cells. Phys. Rev. Lett. 106, 028104 (2011).

Holland, J. et al. Rapid evolution of RNA genomes. Science 215, 1577–1585 (1982).

Holland, J. J., Domingo, E., de la Torre, J. C. & Steinhauer, D. A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990).

Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl. Acad. Sci. U.S.A. 96, 1492–1497 (1999).

Anderson, J. P., Daifuku, R. & Loeb, L. A. Viral error catastrophe by mutagenic nucleosides. Annu. Rev. Microbiol. 58, 183–205 (2004).

Grande-Pérez, A. et al. Suppression of viral infectivity through lethal defection. Proc. Natl. Acad. Sci. U.S.A. 102, 4448–4452 (2005).

Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990).

de la Peña, M., Elena, S. F. & Moya, A. Effect of deleterious mutation-accumulation on the fitness of RNA bacteriophage MS2. Evolution 54, 686–691 (2000).

Duarte, E. et al. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc. Natl. Acad. Sci. U.S.A. 89, 6015–6019 (1992).

de la Iglesia, F. & Elena, S. F. Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J. Virol. 81, 4941–4947 (2007).

Escarmís, C., Lázaro, E. & Manrubia, S. C. Population bottlenecks in quasispecies dynamics. Curr. Top. Microbiol. Immunol. 299, 141–170 (2006).

Yuste, E. et al. (1999) Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J. Virol. 73, 2745–2751 (1999).

Solé, R. V. & Deisboeck, T. S. An error catastrophe in cancer? J. Theor. Biol. 228, 47–54 (2004).

Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell. Biol. 9, M57–60 (1999).

Fox, M. In vitro mutagenesis by anti-cancer drugs. Chemotherapy 315–322 (1976).

Fox, E. J. & Loeb, L. A. Lethal mutagenesis: Targeting the mutator phenotype in cancer. Seminars in Cancer Biology 20, 353–359 (2010).

Loeb, L. A. Human cancers express the mutator phenotypes: origin, consequences and targeting. Nature 11, 450–457 (2011).

Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Medicine 10, 789–99 (2004).

Elena, S. F., Solé, R. V. & Sardanyés, J. Simple genomes, complex interactions: Epistasis in RNA virus. Chaos 20, 026106 (2010).

Reidys, C., Forst, C. V. & Schuster, P. Replication and mutation on neutral networks. Bull. Math. Biol. 63, 57–94 (2001).

[-]

This item appears in the following Collection(s)

Show full item record