- -

The transcriptomics of an experimentally evolved plant-virus interaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The transcriptomics of an experimentally evolved plant-virus interaction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hillung, Julia es_ES
dc.contributor.author García-García, Francisco es_ES
dc.contributor.author DOPAZO, JOAQUÍN es_ES
dc.contributor.author Cuevas Torrijos, Jose Manuel es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2017-05-18T11:48:32Z
dc.date.available 2017-05-18T11:48:32Z
dc.date.issued 2016-04-26
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/81390
dc.description.abstract [EN] Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the transcriptomic basis of such relationships. We have characterized the transcriptomic responses of five ecotypes infected with the ancestral and evolved viruses. Genes and functional categories differentially expressed by plants infected with local TEV isolates were identified, showing heterogeneous responses among ecotypes, although significant parallelism existed among lineages evolved in the same ecotype. Although genes involved in immune responses were altered upon infection, other functional groups were also pervasively over-represented, suggesting that plant resistance genes were not the only drivers of viral adaptation. Finally, the transcriptomic consequences of infection with the generalist and specialist lineages were compared. Whilst the generalist induced very similar perturbations in the transcriptomes of the different ecotypes, the perturbations induced by the specialist were divergent. Plant defense mechanisms were activated when the infecting virus was specialist but they were down-regulated when infecting with generalist. es_ES
dc.description.sponsorship We thank Francisca de la Iglesia and Paula Agudo for excellent technical assistance and our labmates for useful discussions and suggestions. This work was supported by grants BFU2012-30805 from the Spanish Ministry of Economy and Competitiveness (MINECO), PROMETEOII/2014/021 from Generalitat Valenciana and EvoEvo (ICT610427) from the European Commission 7th Framework Program to SFE, and grant PROMETEOII/2014/025 to JD. JMC was supported by a JAE-doc postdoctoral contract from CSIC. JH was recipient of a predoctoral contract from MINECO. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tobacco-ETCH-virus es_ES
dc.subject Long-distance movement es_ES
dc.subject False discovery rate es_ES
dc.subject Plum pox virus es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject Gene expression es_ES
dc.subject Experimental evolution es_ES
dc.subject Chloroplast proteome es_ES
dc.subject ABC transporters es_ES
dc.subject Viral emergence es_ES
dc.title The transcriptomics of an experimentally evolved plant-virus interaction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep24901
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F025/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Hillung, J.; García-García, F.; Dopazo, J.; Cuevas Torrijos, JM.; Elena Fito, SF. (2016). The transcriptomics of an experimentally evolved plant-virus interaction. Scientific Reports. 6:1-19. https://doi.org/10.1038/srep24901 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep24901 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 323442 es_ES
dc.identifier.pmid 27113435 en_EN
dc.identifier.pmcid PMC4845063
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9, 267–276 (2008). es_ES
dc.description.references Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008). es_ES
dc.description.references Holmes, E. C. The comparative genomics of viral emergence. Proc. Natl. Acad. Sci. USA 107, 1742–1746 (2010). es_ES
dc.description.references Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010). es_ES
dc.description.references Elena, S. F. et al. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 24, 287–293 (2011). es_ES
dc.description.references Holmes, E. C. The evolutionary genetics of emerging viruses. Annu. Rev. Ecol. Evol. Syst. 40, 353–372 (2009). es_ES
dc.description.references Domingo, E. Mechanisms of viral emergence. Vet. Res. 41, 38 (2010). es_ES
dc.description.references King, K. C. & Lively, C. M. Does genetic diversity limit disease spread in natural host populations? Heredity 109, 199–203 (2012). es_ES
dc.description.references Kearney, C. M., Thomson, M. J. & Roland, K. E. Genome evolution of Tobacco mosaic virus populations during long-term passaging in a diverse range of hosts. Arch. Virol. 144, 1513–1526 (1999). es_ES
dc.description.references Tan, Z. et al. Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus . J. Gen. Virol. 88, 501–510 (2005). es_ES
dc.description.references Rico, P., Ivars, P., Elena, S. F. & Hernández, C. Insights into the selective pressures restricting Pelargonium flower break virus genome variability: evidence for host adaptation. J. Virol. 80, 8124–8132 (2006). es_ES
dc.description.references Wallis, C. M. et al. Adaptation of Plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J. Gen. Virol. 88, 2839–2845 (2007). es_ES
dc.description.references Agudelo-Romero, P., de la Iglesia, F. & Elena, S. F. The pleiotropic cost of host-specialization in tobacco etch potyvirus. Infect. Genet. Evol. 8, 806–814 (2008). es_ES
dc.description.references Bedhomme, S., Lafforgue, G. & Elena, S. F. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Mol. Biol. Evol. 29, 1481–1492 (2012). es_ES
dc.description.references García-Arenal, F. & Fraile A. Trade-offs in host range evolution of plant viruses. Plant Pathol. 62, S2–S9. (2013). es_ES
dc.description.references Calvo, M., Malinowski, T. & García, J. A. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana- propagated Plum pox virus C isolates to either host. Mol. Plant-Microbe Interact. 27, 136–149 (2014). es_ES
dc.description.references Cuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P. & Elena, S. F. Temporal dynamics of intra-host molecular evolution for a plant RNA virus. Mol. Biol. Evol. 32, 1132–1147 (2015). es_ES
dc.description.references Minicka, J., Rymelska, N., Elena, S. F., Czerwoniec, A. & Hasiów-Jaroszewska, B. Molecular evolution of Pepino mosaic virus during long-term passaging in different hosts and its impact on virus virulence. Ann. Appl. Biol. 166, 389–401 (2015). es_ES
dc.description.references Agudelo-Romero, P., Carbonell, P., Pérez-Amador, M. A. & Elena, S. F. Virus adaptation by manipulation of host's gene expression. PLos ONE 3, e2397 (2008). es_ES
dc.description.references Weigel, D. Natural variation in arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2–22 (2012). es_ES
dc.description.references Mahajan, S. K., Chisholm, S. T., Whitham, S. A. & Carrington, J. C. Identification and characterization of a locus (RTM1) that restricts long-distance movement of Tobacco etch virus in Arabidopsis thaliana . Plant J. 14, 177–186 (1998). es_ES
dc.description.references Whitham, S. A., Yamamoto, M. L. & Carrington, J. C. Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA 96, 772–777 (1999). es_ES
dc.description.references Whitham, S. A., Anderberg, R. J., Chisholm, S. T. & Carrington, J. C. Arabidopsis RTM2 gene is necessary for specific restriction of Tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12, 569–582 (2000). es_ES
dc.description.references Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L. & Carrington, J. C. Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of Tobacco etch virus . Proc. Natl. Acad. Sci. USA 97, 489–494 (2000). es_ES
dc.description.references Chisholm, S. T., Parra, M. A., Anderberg, R. J. & Carrington, J. C. Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of Tobacco etch virus . Plant Physiol. 127, 1667–1675 (2001). es_ES
dc.description.references Cosson, P. et al. RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a MEPRIN and TRAF homology domain-containing protein. Plant Physiol. 154, 222–232 (2010). es_ES
dc.description.references Cosson, P., Sofer, L., Schurdi-Levraud, V. & Revers, F. A member of a new plant gene family encoding a MEPRIN and TRAF homology (MATH) domain-containing protein is involved in restriction of long distance movement of plant viruses. Plant Signal. Behav. 5, 1321–1323 (2010). es_ES
dc.description.references Agudelo-Romero P. et al. Changes in gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus . Virol. J. 5, 92 (2008). es_ES
dc.description.references Lalić, J., Agudelo-Romero, P., Carrasco, P. & Elena, S. F. Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Phil. Trans. R. Soc. B 65, 1997–2008 (2010). es_ES
dc.description.references Hillung, J., Cuevas, J. M. & Elena, S. F. Transcript profiling of different Arabidopsis thaliana ecotypes in response to tobacco etch potyvirus infection. Front. Microbiol. 3, 229 (2012). es_ES
dc.description.references Hillung, J., Cuevas, J. M. & Elena, S. F. Evaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host. Phil. Trans. R. Soc. B 370, 20140292 (2015). es_ES
dc.description.references Hillung, J., Cuevas, J. M., Valverde, S. & Elena, S. F. Experimental evolution of an emerging plant virus in host genotypes that differ in their susceptibility to infection. Evolution 68, 2467–2480 (2014). es_ES
dc.description.references Sartor, M. A., Leikauf, G. D. & Medvedovic, M. LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25, 211–217 (2009). es_ES
dc.description.references Montaner, D. & Dopazo, J. Multidimensional gene set analysis of genomic data. PLos ONE 5, e10348 (2010). es_ES
dc.description.references Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLos ONE 6, e21800 (2011). es_ES
dc.description.references Grennan, A. K. Regulation of starch metabolism in Arabidopsis leaves. Plant Physiol. 142, 1343–1345 (2006). es_ES
dc.description.references Johnson, P. R. & Ecker, J. R. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32, 227–254 (1998). es_ES
dc.description.references Wang, K. L., Li, H. & Ecker, J. R. Ethylene biosynthesis and signaling networks. Plant Cell 14, S131–S151 (2002). es_ES
dc.description.references Binns, D. et al. QuickGO: a web-based tool for gene ontology searching. Bioinformatics 25, 3045–3046 (2009). es_ES
dc.description.references Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98, 12837–12842 (2001). es_ES
dc.description.references Luna, E. et al. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24, 183–193 (2011). es_ES
dc.description.references Ghoshroy, S., Freedman, K., Lartey, R. & Citovsky, V. Inhibition of plant viral systemic infection by non-toxic concentrations of cadmium. Plant J. 13, 591–602 (1998). es_ES
dc.description.references Hayashi, N. et al. Nef of HIV-1 interacts directly with calcium-bound calmodulin. Protein Sci. 11, 529–537 (2002). es_ES
dc.description.references Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipic-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002). es_ES
dc.description.references Rojas, M. R. et al. Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125 (2001). es_ES
dc.description.references Padmanabhan, M. S., Goregaoker, S. P., Golem, S., Shiferaw, H. & Culver, J. N. Interaction of the Tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J. Virol. 79, 2549–2558 (2005). es_ES
dc.description.references Lurin, C. et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103 (2004). es_ES
dc.description.references Takenaka, M., Verbitskiy, D., Zehrmann, A. & Brennicke, A. Reverse genetic screening identifies five E-class PPR proteins involved in RNA editing in mitochondria of Arabidopsis thaliana . J. Biol. Chem. 285, 27122–27129 (2010). es_ES
dc.description.references Gillissen, B. et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis . Plant Cell 12, 291–300 (2000). es_ES
dc.description.references Li, S., Fu, Q., Chen, L., Huang, W. & Yu, D. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233, 1237–1252 (2011). es_ES
dc.description.references Divol, F. et al. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. Plant Cell. Environ. 30, 187–201 (2007). es_ES
dc.description.references Vissenberg, K., Fry, S. C., Pauly, M., Höfte, H. & Verbelen, J. P. XTH acts at the microfibril-matrix interface during cell elongation. J. Exp. Bot. 56, 673–683 (2005). es_ES
dc.description.references Ham, B. K., Li, G., Kang, B. H., Zeng, F. & Lucas, W. J. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell 24, 3630–3648 (2012). es_ES
dc.description.references Bae, M. S., Cho, E. J., Choi, E. Y. & Park, O. K. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J. 36, 652–663 (2003). es_ES
dc.description.references Zargar, S. M. et al. Correlation analysis of proteins responsive to Zn, Mn, or Fe deficiency in Arabidopsis roots based on iTRAQ analysis. Plant Cell Rep. 34, 157–166 (2015). es_ES
dc.description.references Kleffmann, T. et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362 (2004). es_ES
dc.description.references Zybailov, B. et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLos ONE 3, e1994 (2008). es_ES
dc.description.references Wu, P. et al. Phosphate starvation triggers distinct alterations of gene expression in Arabidopsis roots and leaves. Plant Physiol. 132, 1260–1271 (2003). es_ES
dc.description.references Oh, S. A., Lee, S. Y., Chung, I. K., Lee, C. H. & Nam H. G. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol. Biol. 30, 739–754 (1996). es_ES
dc.description.references Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M. & Maclean, D. J. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol. Biochem. 43, 997–1005 (2005). es_ES
dc.description.references Fernández-Calvino, L. et al. Activation of senescence-associated dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. Mol. Plant Pathol. 17, 3–15 (2016). es_ES
dc.description.references Vierstra, R. D. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32, 275–302 (1996). es_ES
dc.description.references Bögre, L., Okrész, L., Henriques, R. & Anthony, R. G. Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424–431 (2003). es_ES
dc.description.references An, L. et al. A zinc finger protein gene ZFP5 integrates phytohormone signalling to control root hair development in Arabidopsis . Plant J. 72, 474–490 (2012). es_ES
dc.description.references Zhou, Z., An, L., Sun, L. & Gan, Y. ZFP5 encodes a functionally equivalent GIS protein to control trichome initiation. Plant Signal. Behav. 7, 28–30 (2012). es_ES
dc.description.references Zhou, Z. et al. Zinc finger protein 5 is required for the control of trichome initiation by acting upstream of zinc finger protein 8 in Arabidopsis . Plant Physiol. 157, 673–682 (2011). es_ES
dc.description.references Lee, D. J. et al. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277, 115–137 (2007). es_ES
dc.description.references Theologis, A. et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana . Nature 408, 816–820 (2000). es_ES
dc.description.references Heyndrickx, K. S. & Vandepoele, K. Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol. 159, 884–901 (2012). es_ES
dc.description.references Martinoia, E. et al. Multifunctionality of plant ABC transporter - more than just detoxifiers. Planta 214, 345–355 (2002). es_ES
dc.description.references Kaneda, M. et al. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J. Exp. Bot. 62, 2063–2077 (2011). es_ES
dc.description.references Alejandro, S. et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 22, 1207–1212 (2012). es_ES
dc.description.references Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000). es_ES
dc.description.references Ohashi-Ito, K. & Bergmann, D. C. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY . Development 134, 2959–2968 (2007). es_ES
dc.description.references Averyanov, A. Oxidative burst and plant disease resistance. Front. Biosci. 1, 142–152 (2009). es_ES
dc.description.references Flury, P., Klauser, D., Schulze, B., Boller, T. & Bartels, S. The anticipation of danger: microbe-associated molecular pattern perception enhances AtPep-triggered oxidative burst. Plant Physiol. 161, 2023–2035 (2013). es_ES
dc.description.references Tanaka, K., Nguyen, C. T., Liang, Y., Cao, Y. & Stacey, G. Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal. Behav. 8, e22598 (2013). es_ES
dc.description.references Nakamura, K. & Matsuoka, K. Protein targeting to the vacuole in plant cells. Plant Physiol. 101, 1–5 (1993). es_ES
dc.description.references Elena, S. F., Agudelo-Romero, P. & Lalić, J. The evolution of viruses in multi-host fitness landscapes. Open Virol. J. 3, 1–6 (2009). es_ES
dc.description.references Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). es_ES
dc.description.references Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004). es_ES
dc.description.references Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995). es_ES
dc.description.references Benjamini,Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001). es_ES
dc.description.references Sneath, P. & Sokal, R. Numerical Taxonomy. ( W.H. Freeman, 1973). es_ES
dc.description.references D'Haeseler, P. How does gene expression clustering work? Nat. Biotech. 23, 1499–1501 (2005). es_ES
dc.description.references Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem