- -

An Optimized PatchMatch for multi-scale and multi-feature label fusion

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An Optimized PatchMatch for multi-scale and multi-feature label fusion

Show full item record

Giraud, R.; Ta, V.; Papadakis, N.; Manjón Herrera, JV.; Collins, L.; Coupé Pierrick; Alzheimers Dis Neuroimaging Initia (2016). An Optimized PatchMatch for multi-scale and multi-feature label fusion. NeuroImage. 124(1):770-782. doi:10.1016/j.neuroimage.2015.07.076

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81421

Files in this item

Item Metadata

Title: An Optimized PatchMatch for multi-scale and multi-feature label fusion
Author:
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
Automatic segmentation methods are important tools for quantitative analysis of Magnetic Resonance Images (MRI). Recently, patch-based label fusion approaches have demonstrated state-of-the-art segmentation accuracy. In ...[+]
Subjects: Patch matching , Segmentation , Late fusion , Hippocampus , Patch-based method
Copyrigths: Reserva de todos los derechos
Source:
NeuroImage. (issn: 1053-8119 )
DOI: 10.1016/j.neuroimage.2015.07.076
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.neuroimage.2015.07.076
Project ID: info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/1U01AG024904-01/US
Thanks:
This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02), ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record