Mostrar el registro sencillo del ítem
dc.contributor.author | Rey, Beatriz | es_ES |
dc.contributor.author | Parkhutik, Vera | es_ES |
dc.contributor.author | Tembl, Jose | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.date.accessioned | 2017-05-22T07:20:13Z | |
dc.date.available | 2017-05-22T07:20:13Z | |
dc.date.issued | 2011 | |
dc.identifier.isbn | 978-3-642-21851-4 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/81548 | |
dc.description.abstract | [EN] Transcranial Doppler monitoring (TCD) has been proposed as a tool to be used in Augmented Cognition (AugCog) systems to monitor brain activation during the performance of different cognitive tasks. In the present study, the main goal is to analyze variations in blood flow velocity (BFV) measured by TCD during the exposure to a virtual reality environment when there are changes in the focus of attention of the participants. Two abrupt events are forced during the navigation in a virtual environment in order to change their focus of attention to the real world. In one of them, the screen goes completely blue, and in the other one, a mesh appears in front of the virtual environment making it difficult to visualize. Results show that BFV values in both middle cerebral arteries remain similar when the first event occurs, but there is an increase during the second event. The origin of this increment may probably be found in the higher difficulty of having a mesh in front of the virtual environment, requiring more attention than before. These results show that changes in the stimuli can generate modifications in BFV that can be monitored by TCD, and can be useful for AugCog applications. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Augmented cognition | es_ES |
dc.subject | Virtual reality | es_ES |
dc.subject | Transcranial doppler | es_ES |
dc.subject | Neurophysiological data | es_ES |
dc.subject | Cognitive state assessment | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-642-21852-1_27 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Rey, B.; Parkhutik, V.; Tembl, J.; Alcañiz Raya, ML. (2011). Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring. Lecture Notes in Computer Science. 6780:212-220. doi:10.1007/978-3-642-21852-1_27 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th International Conference on Foundations of Augmented Cognition (FAC) Held as Part of 14th International Conference on Human-Computer Interaction (HCI) | es_ES |
dc.relation.conferencedate | July 09-14, 2011 | es_ES |
dc.relation.conferenceplace | Orlando, Florida | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/978-3-642-21852-1_27 | es_ES |
dc.description.upvformatpinicio | 212 | es_ES |
dc.description.upvformatpfin | 220 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6780 | es_ES |
dc.relation.senia | 206823 | es_ES |
dc.description.references | Aaslid, R., Markwalder, T.M., Nornes, H.: Noninvasive Transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries. J. Neurosurg. 57, 76–774 (1982); | es_ES |
dc.description.references | Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981) | es_ES |
dc.description.references | Iadecola, C.: Regulation of the Cerebral Microcirculation during Neural Activity: Is Nitric Oxide the Missing Link? Trends Neurosci. 16, 206–214 (1993) | es_ES |
dc.description.references | Risberg, J.: Regional cerebral blood flow in neuropsychology. Neuropsychologia 24, 135–140 (1986) | es_ES |
dc.description.references | Daffertshofer, M.: Functional Doppler testing. In: Hennerici, M., Meairs, S. (eds.) Cerebrovascular ultrasound, pp. 341–359. Cambridge University Press, Cambridge (2001) | es_ES |
dc.description.references | Stroobant, N., Vingerhoets, G.: Transcranial Doppler Ultrasonography Monitoring of Cerebral Hemodynamics during Performance of Cognitive Tasks: A Review. Neuropsychol. Rev. 10, 213–231 (2000) | es_ES |
dc.description.references | Duschek, S., Schandry, R.: Functional Transcranial Doppler sonography as a Tool in Psychophysiological Research. Psychophysiology 40, 436–454 (2003) | es_ES |
dc.description.references | Warm, J.S., Matthews, G., Tripp, L., Hancock, P.A.: Cerebral Hemodynamics and Brain Systems in Vigilance. In: Schmorrow, D.D. (ed.) Foundations of Augmented Cognition, pp. 707–708. Lawrence Erlbaum Associates, Mahwah (2005) | es_ES |
dc.description.references | Warm, J.S., Parasuraman, R.: Cerebral Hemodynamics and Vigilance. In: Parasuraman, R., Rizzo, M. (eds.) Neuroergonomics. The Brain at Work, pp. 146–158. Oxford University Press, New York (2007) | es_ES |
dc.description.references | Schnittger, C., Sönke, J., Anouschen, A., Münte, T.F.: Relation of Cerebral Blood Flow Velocity and Level of Vigilance in Humans. Cognitive Neurosci. and Neuropsychol. 8, 1637–1639 (1997) | es_ES |
dc.description.references | Helton, W.S., Hollander, T.D., Warm, J.S., Tripp, L.D., Parsons, K., Matthews, G., Dember, W.N., Parasuraman, R., Hancock, P.A.: The abbreviated vigilance task and cerebral hemodynamics. J. Clin. and Exp. Neuropsychol. 29, 545–552 (2007) | es_ES |
dc.description.references | Hitchcock, E.M., Warm, J.S., Matthews, G., Dember, W.N., Shear, P.K., Tripp, L.D., Mayleben, D.W., Parasuraman, R.: Automation Cueing Modulates Cerebral Blood Flow and Vigilance in a Simulated Air Traffic Control Task. Theor. Issues in Ergon. Sci. 4, 89–112 (2003) | es_ES |
dc.description.references | Rey, B., Alcañiz, M., Naranjo, V., Tembl, J., Parkhutik, V.: Transcranial Doppler: A Tool for Augmented Cognition in Virtual Environments. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 427–436. Springer, Heidelberg (2009) | es_ES |
dc.description.references | Alcañiz, M., Rey, B., Tembl, J., Parkhutik, V.: A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence, Teleoperators & Virtual Environments 18(2), 97–111 (2009) | es_ES |
dc.description.references | Rey, B., Alcañiz, M., Tembl, J., Parkhutik, V.: Brain Activity and Presence: a Preliminary Study in Different Immersive Conditions using Transcranial Doppler Monitoring. Virtual Reality 14(1), 55–65 (2010) | es_ES |
dc.description.references | Slater, M., Brogni, A., Steed, A.: Physiological responses to breaks in presence: A pilot study. In: Proceedings of the 6th Annual International Workshop on Presence (2003) | es_ES |
dc.description.references | Slater, M., Steed, A.: A virtual presence counter. Presence: Teleoperators & Virtual Environments 9, 413–434 (2000) | es_ES |
dc.description.references | Garau, M., Friedman, D., Widenfeld, H.R., Antley, A., Brogni, A., Slater, M.: Temporal and spatial variations in presence: Qualitative analysis of interviews from an experiment on breaks in presence. Presence: Teleoperators & Virtual Environments 17, 293–309 (2008) | es_ES |
dc.description.references | Slater, M., Guger, C., Edlinger, G., Leeb, R., Pfurtscheller, G., Antley, A., Garau, M., Brogni, A., Friedman, D.: Analysis of physiological responses to a social situation in an immersive virtual environment. Presence: Teleoperators & Virtual Environments 15, 553–569 | es_ES |
dc.description.references | Ringelstein, E.B., Kahlscheuer, B., Niggemeyer, E., Otis, S.M.: Transcranial Doppler sonography: Anatomical landmarks and normal velocity values. Ultrasound in Medicine and Biology 16, 745–761 (1990) | es_ES |
dc.description.references | Sitzer, M., Diehl, R.R., Hennrici, M.: Visually evoked cerebral blood flow responses: Normal and pathological conditions. J Neuroimaging 2, 65–70 (1992) | es_ES |
dc.description.references | Angevine, J.B., Cotman, C.W.: Principles of neuroanatomy. Oxford University Press, New York (1999) | es_ES |
dc.description.references | Holden, M.K., Todorov, E.: Use of virtual environments in motor learning and rehabilitation. In: Stanney, K.M. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 999–1026. Lawrence Erlbaum Assocaites, Mahwah (2002) | es_ES |
dc.description.references | Kelley, R.E., Chang, J.Y., Scheinman, N.J., Levin, B.E., Duncan, R.C., Lee, S.C.: Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke 23, 9–14 (1992) | es_ES |
dc.description.references | Vingerhoets, G., Stroobant, N.: Lateralization of cerebral blood flow velocity changes during cognitive tasks: A simultaneous bilateral transcranial Doppler study. Stroke 30, 2152–2158 | es_ES |