- -

Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring

Show simple item record

Files in this item

dc.contributor.author Rey, Beatriz es_ES
dc.contributor.author Parkhutik, Vera es_ES
dc.contributor.author Tembl, Jose es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.date.accessioned 2017-05-22T07:20:13Z
dc.date.available 2017-05-22T07:20:13Z
dc.date.issued 2011
dc.identifier.isbn 978-3-642-21851-4
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/81548
dc.description.abstract [EN] Transcranial Doppler monitoring (TCD) has been proposed as a tool to be used in Augmented Cognition (AugCog) systems to monitor brain activation during the performance of different cognitive tasks. In the present study, the main goal is to analyze variations in blood flow velocity (BFV) measured by TCD during the exposure to a virtual reality environment when there are changes in the focus of attention of the participants. Two abrupt events are forced during the navigation in a virtual environment in order to change their focus of attention to the real world. In one of them, the screen goes completely blue, and in the other one, a mesh appears in front of the virtual environment making it difficult to visualize. Results show that BFV values in both middle cerebral arteries remain similar when the first event occurs, but there is an increase during the second event. The origin of this increment may probably be found in the higher difficulty of having a mesh in front of the virtual environment, requiring more attention than before. These results show that changes in the stimuli can generate modifications in BFV that can be monitored by TCD, and can be useful for AugCog applications. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Augmented cognition es_ES
dc.subject Virtual reality es_ES
dc.subject Transcranial doppler es_ES
dc.subject Neurophysiological data es_ES
dc.subject Cognitive state assessment es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-642-21852-1_27
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Rey, B.; Parkhutik, V.; Tembl, J.; Alcañiz Raya, ML. (2011). Analyzing Neural Correlates of Attentional Changes during the Exposure to Virtual Environments: Application of Transcranial Doppler Monitoring. Lecture Notes in Computer Science. 6780:212-220. doi:10.1007/978-3-642-21852-1_27 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th International Conference on Foundations of Augmented Cognition (FAC) Held as Part of 14th International Conference on Human-Computer Interaction (HCI) es_ES
dc.relation.conferencedate July 09-14, 2011 es_ES
dc.relation.conferenceplace Orlando, Florida es_ES
dc.relation.publisherversion http://doi.org/10.1007/978-3-642-21852-1_27 es_ES
dc.description.upvformatpinicio 212 es_ES
dc.description.upvformatpfin 220 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6780 es_ES
dc.relation.senia 206823 es_ES
dc.description.references Aaslid, R., Markwalder, T.M., Nornes, H.: Noninvasive Transcranial Doppler Ultrasound Recording of Flow Velocity in Basal Cerebral Arteries. J. Neurosurg. 57, 76–774 (1982); es_ES
dc.description.references Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981) es_ES
dc.description.references Iadecola, C.: Regulation of the Cerebral Microcirculation during Neural Activity: Is Nitric Oxide the Missing Link? Trends Neurosci. 16, 206–214 (1993) es_ES
dc.description.references Risberg, J.: Regional cerebral blood flow in neuropsychology. Neuropsychologia 24, 135–140 (1986) es_ES
dc.description.references Daffertshofer, M.: Functional Doppler testing. In: Hennerici, M., Meairs, S. (eds.) Cerebrovascular ultrasound, pp. 341–359. Cambridge University Press, Cambridge (2001) es_ES
dc.description.references Stroobant, N., Vingerhoets, G.: Transcranial Doppler Ultrasonography Monitoring of Cerebral Hemodynamics during Performance of Cognitive Tasks: A Review. Neuropsychol. Rev. 10, 213–231 (2000) es_ES
dc.description.references Duschek, S., Schandry, R.: Functional Transcranial Doppler sonography as a Tool in Psychophysiological Research. Psychophysiology 40, 436–454 (2003) es_ES
dc.description.references Warm, J.S., Matthews, G., Tripp, L., Hancock, P.A.: Cerebral Hemodynamics and Brain Systems in Vigilance. In: Schmorrow, D.D. (ed.) Foundations of Augmented Cognition, pp. 707–708. Lawrence Erlbaum Associates, Mahwah (2005) es_ES
dc.description.references Warm, J.S., Parasuraman, R.: Cerebral Hemodynamics and Vigilance. In: Parasuraman, R., Rizzo, M. (eds.) Neuroergonomics. The Brain at Work, pp. 146–158. Oxford University Press, New York (2007) es_ES
dc.description.references Schnittger, C., Sönke, J., Anouschen, A., Münte, T.F.: Relation of Cerebral Blood Flow Velocity and Level of Vigilance in Humans. Cognitive Neurosci. and Neuropsychol. 8, 1637–1639 (1997) es_ES
dc.description.references Helton, W.S., Hollander, T.D., Warm, J.S., Tripp, L.D., Parsons, K., Matthews, G., Dember, W.N., Parasuraman, R., Hancock, P.A.: The abbreviated vigilance task and cerebral hemodynamics. J. Clin. and Exp. Neuropsychol. 29, 545–552 (2007) es_ES
dc.description.references Hitchcock, E.M., Warm, J.S., Matthews, G., Dember, W.N., Shear, P.K., Tripp, L.D., Mayleben, D.W., Parasuraman, R.: Automation Cueing Modulates Cerebral Blood Flow and Vigilance in a Simulated Air Traffic Control Task. Theor. Issues in Ergon. Sci. 4, 89–112 (2003) es_ES
dc.description.references Rey, B., Alcañiz, M., Naranjo, V., Tembl, J., Parkhutik, V.: Transcranial Doppler: A Tool for Augmented Cognition in Virtual Environments. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 427–436. Springer, Heidelberg (2009) es_ES
dc.description.references Alcañiz, M., Rey, B., Tembl, J., Parkhutik, V.: A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence, Teleoperators & Virtual Environments 18(2), 97–111 (2009) es_ES
dc.description.references Rey, B., Alcañiz, M., Tembl, J., Parkhutik, V.: Brain Activity and Presence: a Preliminary Study in Different Immersive Conditions using Transcranial Doppler Monitoring. Virtual Reality 14(1), 55–65 (2010) es_ES
dc.description.references Slater, M., Brogni, A., Steed, A.: Physiological responses to breaks in presence: A pilot study. In: Proceedings of the 6th Annual International Workshop on Presence (2003) es_ES
dc.description.references Slater, M., Steed, A.: A virtual presence counter. Presence: Teleoperators & Virtual Environments 9, 413–434 (2000) es_ES
dc.description.references Garau, M., Friedman, D., Widenfeld, H.R., Antley, A., Brogni, A., Slater, M.: Temporal and spatial variations in presence: Qualitative analysis of interviews from an experiment on breaks in presence. Presence: Teleoperators & Virtual Environments 17, 293–309 (2008) es_ES
dc.description.references Slater, M., Guger, C., Edlinger, G., Leeb, R., Pfurtscheller, G., Antley, A., Garau, M., Brogni, A., Friedman, D.: Analysis of physiological responses to a social situation in an immersive virtual environment. Presence: Teleoperators & Virtual Environments 15, 553–569 es_ES
dc.description.references Ringelstein, E.B., Kahlscheuer, B., Niggemeyer, E., Otis, S.M.: Transcranial Doppler sonography: Anatomical landmarks and normal velocity values. Ultrasound in Medicine and Biology 16, 745–761 (1990) es_ES
dc.description.references Sitzer, M., Diehl, R.R., Hennrici, M.: Visually evoked cerebral blood flow responses: Normal and pathological conditions. J Neuroimaging 2, 65–70 (1992) es_ES
dc.description.references Angevine, J.B., Cotman, C.W.: Principles of neuroanatomy. Oxford University Press, New York (1999) es_ES
dc.description.references Holden, M.K., Todorov, E.: Use of virtual environments in motor learning and rehabilitation. In: Stanney, K.M. (ed.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 999–1026. Lawrence Erlbaum Assocaites, Mahwah (2002) es_ES
dc.description.references Kelley, R.E., Chang, J.Y., Scheinman, N.J., Levin, B.E., Duncan, R.C., Lee, S.C.: Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke 23, 9–14 (1992) es_ES
dc.description.references Vingerhoets, G., Stroobant, N.: Lateralization of cerebral blood flow velocity changes during cognitive tasks: A simultaneous bilateral transcranial Doppler study. Stroke 30, 2152–2158 es_ES


This item appears in the following Collection(s)

Show simple item record