Bader, P.; Blanes Zamora, S.; Ponsoda Miralles, E. (2014). Structure preserving integrators for solving (non-)linear quadratic optimal control problems with applications to describe the flight of a quadrotor. Journal of Computational and Applied Mathematics. 262:223-233. https://doi.org/10.1016/j.cam.2013.09.061
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81597
Title:
|
Structure preserving integrators for solving (non-)linear quadratic optimal control problems with applications to describe the flight of a quadrotor
|
Author:
|
Bader, Philipp
Blanes Zamora, Sergio
Ponsoda Miralles, Enrique
|
UPV Unit:
|
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] We present structure preserving integrators for solving linear quadratic optimal control
problems. The goal is to build methods which can also be used for the integration of
nonlinear problems if they are previously ...[+]
[EN] We present structure preserving integrators for solving linear quadratic optimal control
problems. The goal is to build methods which can also be used for the integration of
nonlinear problems if they are previously linearized. The equations are solved using an
iterative method on a fixed mesh with the constraint that at each iteration one can only
use results obtained in previous iterations on that fixed mesh. On the other hand, this
problem requires the numerical integration of matrix Riccati differential equations whose
exact solution is a symmetric positive definite time-dependent matrix which controls
the stability of the equation for the state. This property is not preserved, in general, by
the numerical methods. We analyze how to build methods for the linear problem taking
into account the previous constraints, and we propose second order exponential methods
based on the Magnus series expansion which unconditionally preserve positivity for this
problem and analyze higher order Magnus integrators. The performance of the algorithms
is illustrated with the stabilization of a quadrotor which is an unmanned aerial vehicle.
[-]
|
Subjects:
|
Nonlinear optimal control
,
Linear quadratic methods
,
Matrix Riccati differential equation
,
Second order exponential integrators
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Journal of Computational and Applied Mathematics. (issn:
0377-0427
) (eissn:
1879-1778
)
|
DOI:
|
10.1016/j.cam.2013.09.061
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.cam.2013.09.061
|
Conference name:
|
13th Seminar Numerical Solution of Differential and Differential-Algebraic Equations (NUMDIFF)
|
Conference place:
|
Halle, Germany
|
Conference date:
|
September 10-14, 2012
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/
info:eu-repo/grantAgreement/MECD//AP2009-1892/ES/AP2009-1892/
|
Thanks:
|
This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under the coordinated project
MTM2010-18246-C03 and the Universitat Politècnica de València throughout the project 2087. PB also ...[+]
This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under the coordinated project
MTM2010-18246-C03 and the Universitat Politècnica de València throughout the project 2087. PB also acknowledges the
support through the FPU fellowship AP2009-1892.
[-]
|
Type:
|
Artículo
Comunicación en congreso
|