- -

Modal Series Expansions for Plane Gravitational Waves

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modal Series Expansions for Plane Gravitational Waves

Show full item record

Acedo Rodríguez, L. (2016). Modal Series Expansions for Plane Gravitational Waves. Gravitation and Cosmology. 22(3):251-257. doi:10.1134/S0202289316030026

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81620

Files in this item

Item Metadata

Title: Modal Series Expansions for Plane Gravitational Waves
Author: Acedo Rodríguez, Luis
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
[EN] Propagation of gravitational disturbances at the speed of light is one of the key predictions of the General Theory of Relativity. This result is now backed indirectly by the observations of the behavior of the ephemeris ...[+]
Subjects: Gravitational waves , Modal expansions
Copyrigths: Reserva de todos los derechos
Source:
Gravitation and Cosmology. (issn: 0202-2893 ) (eissn: 1995-0721 )
DOI: 10.1134/S0202289316030026
Publisher:
MAIK Nauka/Interperiodica (МАИК Наука/Интерпериодика)
Publisher version: http://doi.org/10.1134/S0202289316030026
Type: Artículo

References

A. Einstein and N. Rosen, Journal of the Franklin Institute 223, 43–54 (1937).

N. Rosen, Gen. Rel. Grav. 10, 351–364 (1979).

C. Sivaram, Bull. Astr. Soc. India 23, 77–83 (1995). [+]
A. Einstein and N. Rosen, Journal of the Franklin Institute 223, 43–54 (1937).

N. Rosen, Gen. Rel. Grav. 10, 351–364 (1979).

C. Sivaram, Bull. Astr. Soc. India 23, 77–83 (1995).

J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astroph. J. 722, 1030–1034(2010); arXiv: 1011.0718.

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

J. B. Griffiths, Colliding waves in general relativity (Clarendon, Oxford, 1991).

S. Chandrasekhar, The mathematical theory of black holes (Clarendon, Oxford, 1983).

D. Bini, V. Ferrari and J. Ibañez, Nuovo Cim. B 103, 29–44 (1989).

L. Acedo, G. González-Parra, and A. J. Arenas, Nonlinear Analysis: Real World Applications 11, 1819–1825 (2010).

L. Acedo, G. González-Parra, and A. J. Arenas, Physica A 389, 1151–1157 (2010).

G. González-Parra, L. Acedo, and A. J. Arenas, Numerical Algorithms, published online 2013. doi 10.1007/s11075-013-9776-x

W. Rindler, Relativity: Special, General and Cosmological, 2nd ed. (Oxford Univ., New York, 2006).

G. Arfken, Mathematical Methods for Physicists, 3rd. ed. (Academic, Orlando, Florida, 1985).

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 3rd ed. (Pergamon, New York, 1971).

O. Costin, “Topological construction of transseries and introduction to generalized Borel summability,” in Analyzable Functions and Applications, Ed. by O. Costin, M. D. Kruskal, and A. Macintyre, Contemp. Math. 373 (Providence, RI, USA: Am. Math. Soc., 2005); arXiv: math/0608309.

S. R. Coleman, Phys. Lett. B 70, 59–60 (1977).

W. B. Campbell and T. A. Morgan, Phys. Lett. B 84, 87–88 (1979).

A. S. Rabinowitch, Int. J. Adv. Math. Sciences 1 (3), 109–121 (2013).

A. Feinstein and J. Ibañez, Phys. Rev. D 39 (2), 470–473 (1989).

[-]

This item appears in the following Collection(s)

Show full item record