- -

Role of chemical crosslinking in material-driven assembly offibronectin (nano)networks: 2D surfaces and 3D scaffolds

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Role of chemical crosslinking in material-driven assembly offibronectin (nano)networks: 2D surfaces and 3D scaffolds

Show simple item record

Files in this item

dc.contributor.author Sabater i Serra, Roser es_ES
dc.contributor.author León-Boigues, Laia es_ES
dc.contributor.author Sánchez Laosa, Antonio es_ES
dc.contributor.author Gómez Estrada, Luis es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2017-05-23T14:21:48Z
dc.date.available 2017-05-23T14:21:48Z
dc.date.issued 2016-12-01
dc.identifier.issn 0927-7765
dc.identifier.uri http://hdl.handle.net/10251/81661
dc.description.abstract Poly(ethyl acrylate) (PEA) induces the formation of biomimetic fibronectin (FN) (nano)networks uponsimple adsorption from solutions, a process referred to as material-driven FN fibrillogenesis. The ability ofPEA to organize FN has been demonstrated in 2D and 2.5D environments, but not as yet in 3D scaffolds,which incorporate three-dimensionality and chemical crosslinkers that may influence its fibrillogenicpotential. In this paper we show for the first time that while three-dimensionality does not interferewith PEA-induced FN fibrillogenesis, crosslinking does, and we determined the maximum amount ofcrosslinker that can be added to PEA to maintain FN fibrillogenesis. For this, we synthesised 2D substrateswith different amounts of crosslinker (1 10% of ethylene glycol dimethacrylate) and studied the role ofcrosslinking in FN organization using AFM. The glass transition temperature was seen to increase withcrosslinking density and, accordingly, polymer segmental mobility was reduced. The organization ofFN after adsorption (formation of FN fibrils) and the availability of the FN cell-binding domain werefound to be dependent on crosslinking density. Surface mobility was identified as a key parameter for FNsupramolecular organization. PEA networks with up to 2% crosslinker organize the FN in a similar way tonon-crosslinked PEA. Scaffolds prepared with 2% crosslinker also had FN (nano)networks assembled ontheir walls, showing PEA s ability to induce FN fibrillogenesis in 3D environments as long as the amountsof crosslinker is low enough. es_ES
dc.description.sponsorship M.S.S. acknowledges funding from ERC (HealInSynergy 306990) and the UK MRC (MR/L022710/1). The support from the Ministry of Economy and Competitiveness-Spain (MAT2015-69315-C3-1-R Project) including the FEDER financial support, is gratefully acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. We are also grateful to the Electron Microscopy Service of Universitat Politecnica de Valencia for their valuable help. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation ERC (HealInSynergy 306990) es_ES
dc.relation UK MRC (MR/L022710/1) es_ES
dc.relation Ministry of Economy and Competitiveness (Spain), (MAT2015-69315-C3-1- R Project) es_ES
dc.relation FEDER es_ES
dc.relation VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program es_ES
dc.relation Instituto de Salud Carlos III es_ES
dc.relation European Regional Development Fund es_ES
dc.relation.ispartof Colloids and Surfaces B: Biointerfaces es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(ethyl acrylate) es_ES
dc.subject Crosslinked network es_ES
dc.subject Scaffolds es_ES
dc.subject Bioactive substrates es_ES
dc.subject Fibronectin es_ES
dc.subject 3D-fibrillogenesis es_ES
dc.subject Electron Microscopy Service of the UPV es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Role of chemical crosslinking in material-driven assembly offibronectin (nano)networks: 2D surfaces and 3D scaffolds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.colsurfb.2016.08.044
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Sabater I Serra, R.; León-Boigues, L.; Sanchez Laosa, A.; Gómez Estrada, L.; Gómez Ribelles, JL.; Salmerón Sánchez, M.; Gallego Ferrer, G. (2016). Role of chemical crosslinking in material-driven assembly offibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces. 148:324-332. doi:10.1016/j.colsurfb.2016.08.044 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.colsurfb.2016.08.044 es_ES
dc.description.upvformatpinicio 324 es_ES
dc.description.upvformatpfin 332 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 148 es_ES
dc.relation.senia 317295 es_ES
dc.identifier.eissn 1873-4367
dc.identifier.pmid 27619185 en_EN
dc.identifier.pmcid PMC5109969 en_EN


This item appears in the following Collection(s)

Show simple item record