- -

Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification

Show full item record

Naess-Schmidt, E.; Tietze, A.; Blicher, JU.; Petersen, M.; Mikkelsen, IK.; Coupe, P.; Manjón Herrera, JV.... (2016). Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification. International Journal of Computer Assisted Radiology and Surgery. 11(11):1979-1991. doi:10.1007/s11548-016-1433-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/81872

Files in this item

Item Metadata

Title: Automatic thalamus and hippocampus segmentation from MP2RAGE: comparison of publicly available methods and implications for DTI quantification
Author: Naess-Schmidt, Erhard Tietze, Anna Blicher, Jakob Udby Petersen, Mikkel Mikkelsen, Irene K. Coupe, Pierrick Manjón Herrera, José Vicente Eskildsen, Simon Fristed
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
Purpose In both structural and functional MRI, there is a need for accurate and reliable automatic segmentation of brain regions. Inconsistent segmentation reduces sensitivity and may bias results in clinical studies. ...[+]
Subjects: MRI , Segmentation , Hippocampus , Thalamus , MP2RAGE , Diffusion-weighted imaging
Copyrigths: Cerrado
Source:
International Journal of Computer Assisted Radiology and Surgery. (issn: 1861-6410 )
DOI: 10.1007/s11548-016-1433-0
Publisher:
Springer Verlag (Germany)
Publisher version: https://link.springer.com/article/10.1007/s11548-016-1433-0
Project ID:
MINDLab UNIK initiative at Aarhus University
...[+]
MINDLab UNIK initiative at Aarhus University
Danish Ministry of Science, Technology and Innovation/ 09065250
Spanish grant from the Ministerio de Economia competitividad/ TIN2013-43457-R
French State by funding HL-DTI/ ANR-10-IDEX-03-02
Cluster of excellence CPU
LaBEX TRAIL/ HR-DTI ANR-10-LABX-57
CNRS multidisciplinary project "Defi ImagIn"
[-]
Thanks:
This work was funded in part by MINDLab UNIK initiative at Aarhus University, funded by the Danish Ministry of Science, Technology and Innovation, Grant Agreement Number 09065250, partly by the Spanish grant TIN2013-43457-R ...[+]
Type: Artículo

References

Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, Barkhof F, Vrenken H (2014) Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage 92:169–181

Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1):115–126

Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21(4):1428–1442 [+]
Mulder ER, de Jong RA, Knol DL, van Schijndel RA, Cover KS, Visser PJ, Barkhof F, Vrenken H (2014) Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage 92:169–181

Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33(1):115–126

Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21(4):1428–1442

Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46(3):726–738

Coupé P, Manjón JV, Fonov V, Pruessner J, Robles M, Collins DL (2011) Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. Neuroimage 54(2):940–954

Tong T, Wolz R, Coupé P, Hajnal JV, Rueckert D (2013) Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. Neuroimage 76:11–23

Eskildsen SF, Coupé P, Fonov V, Manjón JV, Leung KK, Guizard N, Wassef SN, Østergaard LR, Collins DL (2012) BEaST: brain extraction based on nonlocal segmentation technique. Neuroimage 59(3):2362–2373

Falangola MF, Jensen JH, Tabesh A, Hu C, Deardorff RL, Babb JS, Ferris S, Helpern JA (2013) Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease. Magn Reson Imaging 31(6):840–846

Mitchell AS, Sherman SM, Sommer MA, Mair RG, Vertes RP, Chudasama Y (2014) Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci 34(46):15340–15346

Vestergaard-Poulsen P, Wegener G, Hansen B, Bjarkam CR, Blackband SJ, Nielsen NC, Jespersen SN (2011) Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress. PLoS ONE 6(7):e20653

Granziera C, Daducci A, Romascano D, Roche A, Helms G, Krueger G, Hadjikhani N (2014) Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp 35(4):1461–1468

Coupé P, Eskildsen SF, Manjón JV, Fonov VS, Collins DL (2012) Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to Alzheimer’s disease. Neuroimage 59(4):3736–3747

Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PFF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49(2):1271–1281

Fujimoto K, Polimeni JR, van der Kouwe AJW, Reuter M, Kober T, Benner T, Fischl B, Wald LL (2014) Quantitative comparison of cortical surface reconstructions from MP2RAGE and multi-echo MPRAGE data at 3 and 7 T. Neuroimage 90:60–73

Dudo RO, Hart PE, Stork D (2001) Pattern classification, 2nd edn. Wiley, Hoboken

Leemans A, Jeurissen B, Sijbers J, Jones D (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, vol 17, no 2, p 3537

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

Power BD, Wilkes FA, Hunter-Dickson M, van Westen D, Santillo AF, Walterfang M, Nilsson C, Velakoulis D, Looi JCL (2015) Validation of a protocol for manual segmentation of the thalamus on magnetic resonance imaging scans. Psychiatry Res 232(1):98–105

Boccardi M, Bocchetta M, Apostolova LG, Barnes J, Bartzokis G, Corbetta G,DeCarliC, deToledo-Morrell L, Firbank M, Ganzola R, Gerritsen L, Henneman W, Killiany RJ, Malykhin N, Pasqualetti P, Pruessner JC, Redolfi A, Robitaille N, Soininen H, Tolomeo D, Wang L, Watson C, Wolf H, Duvernoy H, Duchesne S, Jack CR, Frisoni GB (2014) Delphi definition of the EADC-ADNI harmonized protocol for hippocampal segmentation on magnetic resonance. Alzheimers Dement 11(2):126–138

Manjón JV, Coupé P (2015) volBrain: an online MRI brain volumetry system. Hum Brain Mapp 15:2015

Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3):907–922

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, Van Der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

Frisoni GB, Jack CR, Bocchetta M, Bauer C, Frederiksen KS, Liu Y, Preboske G, Swihart T, Blair M, Cavedo E, Grothe MJ, Lanfredi M, Martinez O, Nishikawa M, Portegies M, Stoub T, Ward C, Apostolova LG, Ganzola R, Wolf D, Barkhof F, Bartzokis G, DeCarli C, Csernansky JG, Detoledo-Morrell L, Geerlings MI, Kaye J, Killiany RJ, Lehericy S, Matsuda H, O’Brien J, Silbert LC, Scheltens P, Soininen H, Teipel S, Waldemar G, Fellgiebel A, Barnes J, Firbank M, Gerritsen L, Henneman W, Malykhin N, Pruessner JC, Wang L, Watsonl C, Wolf H, Deleon M, Pantel J, Ferrari C, Bosco P, Pasqualetti P, Duchesne S, Duvernoy H, Boccardi M, Albert MS, Bennet D, Camicioli R, Collins DL, Dubois B, Hampel H, Denheijer T, Hock C, Jagust W, Launer L, Maller JJ, Mueller S, Sachdev P, Simmons A, Thompson PM, Visser PJ, Wahlund LO, Weiner MW, Winblad B (2015) The EADC-ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: evidence of validity. Alzheimer’s Dement 11(2):111–125

Næss-Schmidt ET, Tietze A, Mikkelsen IK, Petersen M, Blicher JU, Coupé P, Manjón JV, Eskildsen SF (2015) Patch-based segmentation from MP2RAGE images: comparison to conventional techniques. In: Wu G, Coupé P, Zhan Y, Munsell B, Rueckert D (eds) First international workshop, patch-techniques in medical imaging. Lecture notes in computer science, held in conjunction with MICCAI 2015, vol 9467. Munich, Germany, pp.180–187

Barbagallo G, Nicoletti G, Cherubini A, Trotta M, Tallarico T, Chiriaco C, Nisticò R, Salvino D, Bono F, Valentino P, Quattrone A (2014) Diffusion tensor MRI changes in gray structures of the frontal-subcortical circuits in amyotrophic lateral sclerosis. Neurol Sci 35(6):911–918

Okubo G, Okada T, Yamamoto A, KanagakiM, Fushimi Y, Okada T, Murata K, Togashi K (2015) MP2RAGE for deep gray matter measurement of the brain: a comparative study with MPRAGE. J Magn Reson Imaging 43(1):55–62

[-]

This item appears in the following Collection(s)

Show full item record