- -

Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Magin, I.M. es_ES
dc.contributor.author Polyakov, N.E. es_ES
dc.contributor.author Kruppa, A. I. es_ES
dc.contributor.author Purtov, P.A. es_ES
dc.contributor.author Leshina, T. V. es_ES
dc.contributor.author Kiryutin, A. S. es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Nuin Plá, Neus Edurne es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.date.accessioned 2017-05-29T09:44:36Z
dc.date.available 2017-05-29T09:44:36Z
dc.date.issued 2016-01-14
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/81901
dc.description.abstract [EN] Photoinduced processes with partial (exciplex) and full charge transfer in donor-acceptor systems are of interest because they are frequently used for modeling drug-protein binding. Low field photo-CIDNP (chemically induced dynamic nuclear polarization) for these processes in dyads, including the drug, (S)-and (R)-naproxen and (S)-N-methyl pyrrolidine in solutions with strong and weak permittivity have been measured. The dramatic influence of solvent permittivity on the field dependence of the N-methyl pyrrolidine H-1 CIDNP effects has been found. The field dependences of both (R, S)-and (S, S)-dyads in a polar medium are the curves with a single extremum in the area of the S-T+ terms intersection. Moreover, the CIDNP field dependences of the same protons measured in a low polar medium present curves with several extrema. The shapes of the experimental CIDNP field dependence with two extrema have been described using the Green function approach for the calculation of the CIDNP effects in the system without electron exchange interactions. The article discusses the possible causes of the differences between the CIDNP field dependence detected in a low-permittivity solvent with the strong Coulomb interactions and in a polar solvent. es_ES
dc.description.sponsorship This study was supported by the grant 14-03-00-192 of the Russian Foundation of Basic Research. The authors are also deeply grateful to Professor Hans-Martin Vieth for the given opportunity to conduct experiments on his unique equipment.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Radical-ion pairs es_ES
dc.subject Green-function method es_ES
dc.subject Magnetic-field es_ES
dc.subject Semiclassical description es_ES
dc.subject Geminate recombination es_ES
dc.subject Spin polarization es_ES
dc.subject Fluorescence es_ES
dc.subject Exciplex es_ES
dc.subject Solvent es_ES
dc.subject Nuclear es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C5CP04233J
dc.relation.projectID info:eu-repo/grantAgreement/RFBR//14-03-00-192/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Magin, I.; Polyakov, N.; Kruppa, AI.; Purtov, P.; Leshina, TV.; Kiryutin, AS.; Miranda Alonso, MÁ.... (2016). Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads. Physical Chemistry Chemical Physics. 18(2):901-907. https://doi.org/10.1039/C5CP04233J es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c5cp04233j es_ES
dc.description.upvformatpinicio 901 es_ES
dc.description.upvformatpfin 907 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 298370 es_ES
dc.identifier.eissn 1463-9084
dc.identifier.pmid 26648262
dc.contributor.funder Russian Foundation for Basic Research
dc.description.references Reece, S. Y., & Nocera, D. G. (2009). Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems. Annual Review of Biochemistry, 78(1), 673-699. doi:10.1146/annurev.biochem.78.080207.092132 es_ES
dc.description.references Richert, S., Rosspeintner, A., Landgraf, S., Grampp, G., Vauthey, E., & Kattnig, D. R. (2013). Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes. Journal of the American Chemical Society, 135(40), 15144-15152. doi:10.1021/ja407052t es_ES
dc.description.references Aich, S., & Basu, S. (1998). Magnetic Field Effect: A Tool for Identification of Spin State in a Photoinduced Electron-Transfer Reaction. The Journal of Physical Chemistry A, 102(4), 722-729. doi:10.1021/jp972264m es_ES
dc.description.references Vayá, I., Pérez-Ruiz, R., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091 es_ES
dc.description.references Werner, U., & Staerk, H. (1995). Magnetic Field Effect in the Recombination Reaction of Radical Ion Pairs: Dependence on Solvent Dielectric Constant. The Journal of Physical Chemistry, 99(1), 248-254. doi:10.1021/j100001a038 es_ES
dc.description.references Kattnig, D. R., Rosspeintner, A., & Grampp, G. (2008). Fully Reversible Interconversion between Locally Excited Fluorophore, Exciplex, and Radical Ion Pair Demonstrated by a New Magnetic Field Effect. Angewandte Chemie International Edition, 47(5), 960-962. doi:10.1002/anie.200703488 es_ES
dc.description.references Kattnig, D. R., Rosspeintner, A., & Grampp, G. (2011). Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy. Phys. Chem. Chem. Phys., 13(8), 3446-3460. doi:10.1039/c0cp01517b es_ES
dc.description.references Vayá, I., Lhiaubet-Vallet, V., Jiménez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413f es_ES
dc.description.references Polyakov, N. E., Taraban, M. B., & Leshina, T. V. (2004). Photo-CIDNP Study of the Interaction of Tyrosine with Nifedipine. An Attempt to Model the Binding Between Calcium Receptor and Calcium Antagonist Nifedipine¶. Photochemistry and Photobiology, 80(3), 565. doi:10.1562/0031-8655(2004)080<0565:psotio>2.0.co;2 es_ES
dc.description.references Cao, H., Fujiwara, Y., Haino, T., Fukazawa, Y., Tung, C.-H., & Tanimoto, Y. (1996). Magnetic Field Effects on Intramolecular Exciplex Fluorescence of Chain-Linked Phenanthrene andN,N-Dimethylaniline: Influence of Chain Length, Solvent, and Temperature. Bulletin of the Chemical Society of Japan, 69(10), 2801-2813. doi:10.1246/bcsj.69.2801 es_ES
dc.description.references Magin, I. M., Polyakov, N. E., Khramtsova, E. A., Kruppa, A. I., Tsentalovich, Y. P., Leshina, T. V., … Marin, M. L. (2011). Spin effects in intramolecular electron transfer in naproxen-N-methylpyrrolidine dyad. Chemical Physics Letters, 516(1-3), 51-55. doi:10.1016/j.cplett.2011.09.057 es_ES
dc.description.references Khramtsova, E. A., Plyusnin, V. F., Magin, I. M., Kruppa, A. I., Polyakov, N. E., Leshina, T. V., … Miranda, M. A. (2013). Time-Resolved Fluorescence Study of Exciplex Formation in Diastereomeric Naproxen–Pyrrolidine Dyads. The Journal of Physical Chemistry B, 117(50), 16206-16211. doi:10.1021/jp4083147 es_ES
dc.description.references Magin, I. M., Purtov, P. A., Kruppa, A. I., & Leshina, T. V. (2005). Peculiarities of Magnetic and Spin Effects in a Biradical/Stable Radical Complex (Three-Spin System). Theory and Comparison with Experiment. The Journal of Physical Chemistry A, 109(33), 7396-7401. doi:10.1021/jp051115y es_ES
dc.description.references Subramanian, V., Bellubbi, B. S., & Sobhanadri, J. (1993). Dielectric studies of some binary liquid mixtures using microwave cavity techniques. Pramana, 41(1), 9-20. doi:10.1007/bf02847313 es_ES
dc.description.references Acemioğlu, B., Arık, M., Efeoğlu, H., & Onganer, Y. (2001). Solvent effect on the ground and excited state dipole moments of fluorescein. Journal of Molecular Structure: THEOCHEM, 548(1-3), 165-171. doi:10.1016/s0166-1280(01)00513-9 es_ES
dc.description.references Grosse, S., Gubaydullin, F., Scheelken, H., Vieth, H.-M., & Yurkovskaya, A. V. (1999). Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments. Applied Magnetic Resonance, 17(2-3), 211-225. doi:10.1007/bf03162162 es_ES
dc.description.references Magin, I. M., Polyakov, N. E., Khramtsova, E. A., Kruppa, A. I., Stepanov, A. A., Purtov, P. A., … Marin, M. L. (2011). Spin Chemistry Investigation of Peculiarities of Photoinduced Electron Transfer in Donor–Acceptor Linked System. Applied Magnetic Resonance, 41(2-4), 205-220. doi:10.1007/s00723-011-0288-3 es_ES
dc.description.references C. K. Mann and K. K.Barnes, Electrochemical Reactions in Nonaqueous Systems, M. Dekker, New York, 1970 es_ES
dc.description.references N. S. Landolt-Bornstein , Numerical Data and Functional Relationship in Science and Technology: Magnetic Properties of Free Radicals, Springer-Verlag, Berlin, 1988 es_ES
dc.description.references Grigoryants, V. M., Anisimov, O. A., & Molin, Y. N. (1982). Study of the radical-cations of triethylamine and benzene derivatives by the optical detection of the EPR spectra of radical-ion Pairs. Journal of Structural Chemistry, 23(3), 327-333. doi:10.1007/bf00753466 es_ES
dc.description.references Bargon, J. (1977). CIDNP from geminate recombination of radical-ion pairs in polar solvents. Journal of the American Chemical Society, 99(25), 8350-8351. doi:10.1021/ja00467a054 es_ES
dc.description.references Purtov, P. A., & Doktorov, A. B. (1993). The Green function method in the theory of nuclear and electron spin polarization. I. General theory, zero approximation and applications. Chemical Physics, 178(1-3), 47-65. doi:10.1016/0301-0104(93)85050-i es_ES
dc.description.references Purtov, P. A., Doktorov, A. B., & Popov, A. V. (1994). The green function method in the theory of nuclear and electron spin polarization. II. The first approximation and its application in the CIDEP theory. Chemical Physics, 182(2-3), 149-166. doi:10.1016/0301-0104(93)e0449-6 es_ES
dc.description.references K. M. Salikhov , Yu. N.Molin, R. Z.Sagdeev and A. L.Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical, ed. Yu. N. Molin, Akademiai Kiado, Budapest, 1984 es_ES
dc.description.references Polyakov, N. E., Purtov, P. A., Leshina, T. V., Taraban, M. B., Sagdeev, R. Z., & Salikhov, K. M. (1986). Application of the semiclassical description of hyperfine interaction to studies of the dependence of the CIDNP effect on an external magnetic field. Chemical Physics Letters, 129(4), 357-361. doi:10.1016/0009-2614(86)80358-x es_ES
dc.description.references Shiotani, M., Sjoeqvist, L., Lund, A., Lunell, S., Eriksson, L., & Huang, M. B. (1990). An ESR and theoretical ab initio study of the structure and dynamics of the pyrrolidine radical cation and the neutral 1-pyrrolidinyl radical. The Journal of Physical Chemistry, 94(21), 8081-8090. doi:10.1021/j100384a020 es_ES
dc.description.references De Kanter, F. J. J., den Hollander, J. A., Huizer, A. H., & Kaptein, R. (1977). Biradical CIDNP and the dynamics of polymethylene chains. Molecular Physics, 34(3), 857-874. doi:10.1080/00268977700102161 es_ES
dc.description.references De Kanter, F. J. J., Kaptein, R., & Van Santen, R. A. (1977). Magnetic field dependent biradical CIDNP as a tool for the study of conformations of polymethylene chains. Chemical Physics Letters, 45(3), 575-579. doi:10.1016/0009-2614(77)80093-6 es_ES
dc.description.references Tsentalovich, Y. P., Yurkovskaya, A. V., Sagdeev, R. Z., Obynochny, A. A., Purtov, P. A., & Shargorodsky, A. A. (1989). Kinetics of nuclear polarization in the geminate recombination of biradicals. Chemical Physics, 139(2-3), 307-315. doi:10.1016/0301-0104(89)80143-0 es_ES
dc.description.references Popov, A. V., Purtov, P. A., & Yurkovskaya, A. V. (2000). Calculation of CIDNP field dependences in biradicals in the photolysis of large-ring cycloalkanones. Chemical Physics, 252(1-2), 83-95. doi:10.1016/s0301-0104(99)00293-1 es_ES
dc.description.references Magin, I. M., Shevel’kov, V. S., Obynochny, A. A., Kruppa, A. I., & Leshina, T. V. (2002). CIDNP study of the third spin effect on the singlet–triplet evolution in radical pairs. Chemical Physics Letters, 357(5-6), 351-357. doi:10.1016/s0009-2614(02)00544-4 es_ES
dc.description.references Schulten, K., & Wolynes, P. G. (1978). Semiclassical description of electron spin motion in radicals including the effect of electron hopping. The Journal of Chemical Physics, 68(7), 3292-3297. doi:10.1063/1.436135 es_ES
dc.description.references Kalneus, E. V., Stass, D. V., & Molin, Y. N. (2005). Typical applications of MARY spectroscopy: Radical ions of substituted benzenes. Applied Magnetic Resonance, 28(3-4), 213-229. doi:10.1007/bf03166757 es_ES
dc.description.references Kruppa, A. I., Leshina, T. V., Sagdeev, R. Z., Korolenko, E. C., & Shokhirev, N. V. (1987). Low-field CIDNP study of photoinduced electron transfer reactions. Chemical Physics, 114(1), 95-101. doi:10.1016/0301-0104(87)80022-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem