Mostrar el registro sencillo del ítem
dc.contributor.author | McCluskey, A.E. | es_ES |
dc.contributor.author | Watson, Stephen | es_ES |
dc.date.accessioned | 2017-05-30T10:48:46Z | |
dc.date.available | 2017-05-30T10:48:46Z | |
dc.date.issued | 2002-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82019 | |
dc.description.abstract | [EN] A topological space is TUD if the derived set of each point is the union of disjoint closed sets. We show that there is a minimal TUD space which is not just the Alexandroff topology on a linear order. Indeed the structure of the underlying partial order of a minimal TUD space can be quite complex. This contrasts sharply with the known results on minimality for weak separation axioms. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Minimal topologies | es_ES |
dc.subject | Weak separation axioms | es_ES |
dc.title | Minimal TUD spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-05-30T09:28:27Z | |
dc.identifier.doi | 10.4995/agt.2002.2112 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Mccluskey, A.; Watson, S. (2002). Minimal TUD spaces. Applied General Topology. 3(1):55-64. https://doi.org/10.4995/agt.2002.2112 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2002.2112 | es_ES |
dc.description.upvformatpinicio | 55 | es_ES |
dc.description.upvformatpfin | 64 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.provenance | Universitat Politècnica de València |