Guarnizo, JG.; Mellado Arteche, M. (2016). Robot Soccer Strategy Based on Hierarchical Finite State Machine to Centralized Architectures. IEEE Latin America Transactions. 14(8):3586-3596. doi:10.1109/TLA.2016.7786338
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82026
Title:
|
Robot Soccer Strategy Based on Hierarchical Finite State Machine to Centralized Architectures
|
Author:
|
Guarnizo, J. G
Mellado Arteche, Martín
|
UPV Unit:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
|
Issued date:
|
|
Abstract:
|
[EN] Coordination among the robots allows a robot soccer team to perform better through coordinated behaviors. This requires that team strategy is designed in line with the conditions of the game. This paper presents the ...[+]
[EN] Coordination among the robots allows a robot soccer team to perform better through coordinated behaviors. This requires that team strategy is designed in line with the conditions of the game. This paper presents the architecture for robot soccer team coordination, involving the dynamic assignment of roles among the players. This strategy is divided into tactics, which are selected by a Hierarchical State Machine. Once a tactic has been selected, it is assigned roles to players, depending on the game conditions. Each role performs defined behaviors selected by the Hierarchical State Machine. To carry out the behaviors, robots are controlled by the lowest level of the Hierarchical State Machine. The architecture proposed is designed for robot soccer teams with a central decision-making body, with global perception. 200 games were performed against a team with constant roles, winning the 92.5% of the games, scoring more goals on average that the opponent, and showing a higher percent of ball possession. Student s t-test shows better matching with measurement uncertainty of the strategy proposed. This architecture allowed an intuitive design of the robot soccer strategy, facilitating the design of the rules for role selection and behaviors performed by the players, depending on the game conditions. Collaborative behaviors and uniformity within the players behaviors during the tactics and behaviors transitions were observed
[-]
|
Subjects:
|
Robot soccer
,
Strategy
,
Multi-robot systems
,
Architecture
,
Coordination
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
IEEE Latin America Transactions. (issn:
1548-0992
)
|
DOI:
|
10.1109/TLA.2016.7786338
|
Publisher:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Publisher version:
|
http://ieeexplore.ieee.org/document/7786338/
|
Description:
|
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
|
Thanks:
|
Jose Guillermo Guarnizo ha sido financiado por una beca del Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS, Colombia.
|
Type:
|
Artículo
|