- -

A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer

Show simple item record

Files in this item

dc.contributor.author Medina, Rosana es_ES
dc.contributor.author Torres Serrano, Erik es_ES
dc.contributor.author Segrelles Quilis, José Damián es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.contributor.author Martí Bonmatí, Luis es_ES
dc.contributor.author Almenar-Cubells, Daniel es_ES
dc.date.accessioned 2017-05-30T13:34:35Z
dc.date.available 2017-05-30T13:34:35Z
dc.date.issued 2015-04
dc.identifier.issn 0897-1889
dc.identifier.uri http://hdl.handle.net/10251/82028
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10278-014-9728-6. es_ES
dc.description.abstract This paper describes a methodology for redesigning the clinical processes to manage diagnosis, follow-up, and response to treatment episodes of breast cancer. This methodology includes three fundamental elements: (1) identification of similar and contrasting cases that may be of clinical relevance based upon a target study, (2) codification of reports with standard medical terminologies, and (3) linking and indexing the structured reports obtained with different techniques in a common system. The combination of these elements should lead to improvements in the clinical management of breast cancer patients. The motivation for this work is the adaptation of the clinical processes for breast cancer created by the Valencian Community health authorities to the new techniques available for data processing. To achieve this adaptation, it was necessary to design nine Digital Imaging and Communications in Medicine (DICOM) structured report templates: six diagnosis templates and three summary templates that combine reports from clinical episodes. A prototype system is also described that links the lesion to the reports. Preliminary tests of the prototype have shown that the interoperability among the report templates allows correlating parameters from different reports. Further work is in progress to improve the methodology in order that it can be applied to clinical practice. es_ES
dc.description.sponsorship We thank the subject matter experts for sharing their insights through this study. We are especially appreciative of the efforts of the Radiology Unit and Medical Oncology Unit teams at the University Hospital Dr. Peset. This work was partially supported by the Vicerectorat d'Investigacio de la Universitat Politecnica de Valencia (UPVLC) to develop the project "Mejora del proceso diagnostico del cancer de mama" with reference UPV-FE-2013-8. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Universitat Politècnica de València (UPVLC) (Spain) Vicerectorat d’Investigació project UPV-FE-2013-8 es_ES
dc.relation.ispartof Journal of Digital Imaging es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Structured reporting es_ES
dc.subject Breast cancer es_ES
dc.subject BI-RADS es_ES
dc.subject Clinical oncology es_ES
dc.subject Information storage and retrieval es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10278-014-9728-6
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Medina, R.; Torres Serrano, E.; Segrelles Quilis, JD.; Blanquer Espert, I.; Martí Bonmatí, L.; Almenar-Cubells, D. (2015). A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer. Journal of Digital Imaging. 28(2):132-145. doi:10.1007/s10278-014-9728-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10278-014-9728-6 es_ES
dc.description.upvformatpinicio 132 es_ES
dc.description.upvformatpfin 145 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 269286 es_ES
dc.identifier.eissn 1618-727X
dc.identifier.pmcid PMC4359202 en_EN
dc.relation.references Ratib O: Imaging informatics: From image management to image navigation. Yearb Med Inform 2009; 167–172 es_ES
dc.relation.references Oakley J. Digital Imaging: A Primer for Radiographers, Radiologists and Health Care Professionals. Cambridge University Press, 2003. es_ES
dc.relation.references Prokosch HU, Dudeck J: Hospital information systems: Design and development characteristics, impact and future architecture. Elsevier health sciences, 1995 es_ES
dc.relation.references Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations. Int J High Perform Comput Appl 2001; 15(3):200–222. es_ES
dc.relation.references Oram A: Peer-to-Peer: Harnessing the power of disruptive technologies. O’Reilly Media, 2001 es_ES
dc.relation.references National Institute of Standards and Technology. The NIST Definition of Cloud Computing. 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed 29 Jan 2013) es_ES
dc.relation.references Oster S, Langella S, Hastings S, Ervin D, Madduri R, Phillips J, Kurc T, Siebenlist F, Covitz P, Shanbhag K, Foster I, Saltz J. caGrid 1.0: An enterprise grid infrastructure for biomedical research. J Am Med Inform Assoc 2008; 15:138–149. es_ES
dc.relation.references Natter MD, Quan J, Ortiz DM, et al. An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 2013; 20:172–179. es_ES
dc.relation.references Ohno-Machado L, Bafna V, Boxwala AA, et al. iDASH: Integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc 2012; 19:196–201. es_ES
dc.relation.references Channin DS, Mongkolwat P, Kleper V, Rubin DL. Computing human image annotation. Conf Proc IEEE Eng Med Biol Soc 2009; 1:7065–8. es_ES
dc.relation.references Sittig DF, Wright A, Osheroff JA, et al. Grand challenges in clinical decision support. J Biomed Inform 2008; 41(2):387–392. es_ES
dc.relation.references Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst 2012; 36(5):3029–3049. es_ES
dc.relation.references Rubin DL. Creating and curating a terminology for radiology: Ontology modeling and analysis. J Digit Imaging 2008; 21(4):355–362. es_ES
dc.relation.references Kahn CE, Jr., Langlotz CP, Burnside ES, Carrino JA, Channin DS, Hovsepian DM, et al. Toward best practices in radiology reporting. Radiology 2009; 252(3):852–856. es_ES
dc.relation.references Taira PK, Soderlang SG, JAbovits RM. Automatic structuring of radiology free-text reports. Radiographics 2001; 21(1); 237–245. es_ES
dc.relation.references Fujii H, Yamagishi H, Ando Y, Tsukamoto N, Kawaguchi O, Kasamatsu T, et al. Structuring of free-text diagnostic report. Stud. Health Technol. Inform. 2007; 129: 669–673. es_ES
dc.relation.references Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH, Speroff T. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011; 306(8):848–855. es_ES
dc.relation.references Clunie DA: DICOM structured reporting. PixelMed Publishing, 2000 es_ES
dc.relation.references D’Avolio LW, Nguyen TM, Farwell WR, Chen Y, Fitzmeyer F, Harris OM, Fiore LD. Evaluation of a generalizable approach to clinical information retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc 2012; 17:375–382. es_ES
dc.relation.references Napel SA, Beaulieu CF, Redriguez C, Cui J, Xu J, Grupta A, et al. Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology 2010; 256(1): 243–252. es_ES
dc.relation.references Langlotz CP. RadLex: A new method for indexing online educational materials. Radiographics 2006; 26(6):1595–1597. es_ES
dc.relation.references Crestania F, Vegas J, de la Fuente P. A graphical user interface for the retrieval of hierarchically structured documents. Inf Process Manag 2004; 40(2):269–289. es_ES
dc.relation.references Weiss DL, Langlotz CP. Structured reporting: Patient care enhancement or productivity nightmare? Radiology 2008. 249(3):739–747. es_ES
dc.relation.references Yen PY, Bakken S. Review of health information technology usability study methodologies. J Am Med Inform Assoc 2012; 19(3):413–422. es_ES
dc.relation.references Patrick R, Julien G, Christian L, Antoine G. Automatic medical encoding with SNOMED categories. BMC Med Inform Decis Mak 2008; 8(Suppl 1): S1–S6. es_ES
dc.relation.references Lopez-Garcia P, Boeker M, Illarramendi A, Schulz S. Usability-driven pruning of large ontologies: The case of SNOMED CT, J Am Med Inform Assoc 2012; 19:e102-e109. es_ES
dc.relation.references World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. http://apps.who.int/classifications/apps/icd/icd10online/ (accessed 29 Jan 2013) es_ES
dc.relation.references American College of Radiology (ACR) Breast Imaging Reporting and Data System Atlas (BI-RADS® Atlas) es_ES
dc.relation.references World Health Organization. International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3). http://www.who.int/classifications/icd/adaptations/oncology/en/index.html (accessed 29 Jan 2013) es_ES
dc.relation.references Greene FL. TNM: Our language of cancer. CA Cancer J Clin 2004; 54(3):129–130. es_ES
dc.relation.references American Joint Committee of Cancer (AJCC). AJCC Cancer Staging Manual. Seventh Edition. Springer, 2010 es_ES
dc.relation.references Hussein R, Engelmann U, Schroeter A, Meinzer HP. DICOM structured reporting: Part 1. Overview and characteristics, Radiographics 2004; 24(3):891–896. es_ES
dc.relation.references Sluis D, Lee KP, Mankovich N. DICOM SR - integrating structured data into clinical information systems. Medicamundi 2002; 46(2):31–36. es_ES
dc.relation.references Percha B, Nassif H, Lipson J, Burnside E, Rubin D. Automatic classification of mammography reports by BI-RADS breast tissue composition class. J Am Med Inform Assoc 2012; 19(5):913–916. es_ES
dc.relation.references Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A. Reader variability in reporting breast imaging according to BI-RADS assessment categories (the Florence experience). Breast 2006; 15(1):44–51. es_ES
dc.relation.references National Electrical Manufacturers Association (NEMA). Digital Imaging and Communications in Medicine (DICOM). Part 16: Content Mapping Resource. http://medical.nema.org/dicom/2004/04_16PU.PDF (accessed 29 Jan 2013) es_ES
dc.relation.references Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shvo AS. HL7 clinical document architecture, release 2. J Am Med Inform Assoc 2006; 13:30–39. es_ES
dc.relation.references Blanquer I, Hernández V, Meseguer JE, Segrelles D. Content-based organisation of virtual repositories of DICOM objects. Future Gener Comput Syst 2009; 25(6):627–637. es_ES
dc.relation.references Blanquer I, Hernández V, Segrelles D, Torres E. Enhancing privacy and authorization control scalability in the grid through ontologies. IEEE Trans Inf Technol Biomed 2009; 12(1):16–24. es_ES
dc.relation.references Salavert J, Maestre C, Segrelles D, Blanquer I, Hernández V, Medina R, Martí L: Grid prototype to support cancer of breast diagnostics in clinic practice. Proc of the 4th. Iberian Grid Infrastructure Conf. Netbiblo, 2010 es_ES
dc.relation.references Segrelles D, Franco JM, Medina R, Blanquer I, Salavert J, Hernandez V, Martí L, Díaz G, Ramos R, Guevara MA, González N, Loureiro J, Ramos I. Exchanging data for breast cancer diagnosis on heterogeneous grid platforms. Computing and Informatics 2012; 31(1):3–15. es_ES
dc.relation.references Ali MS, Consens M, Lalmas M. Extended structural relevance framework: A framework for evaluating structured document retrieval. Inf Retrieval 2012; 15:558–590. es_ES
dc.relation.references Welter P, Riesmeier J, Fischer B, Grouls C, Kuhl C, Deserno, TM. Bridging the integration gap between imaging and information systems: A uniform data concept for content-based image retrieval in computer-aided diagnosis. J Am Med Inform Assoc 2011; 18:506–510. es_ES
dc.relation.references Jenkins CW. Application prototyping: A case study. Perform Eval Rev 1981; 10(1):21–27. es_ES
dc.relation.references Generalitat Valenciana. Conselleria de Sanitat. Oncoguía de Cáncer de Mama Comunidad Valenciana. http://publicaciones.san.gva.es/publicaciones/documentos/V.2478-2006.pdf (accessed 29 Jan 2013) es_ES
dc.relation.references Maestre C, Segrelles-Quilis JD, Torres E, Blanquer I, Medina R, Hernández V, Martí L. Assessing the usability of a science gateway for medical knowledge bases with TRENCADIS. J Grid Computing 2012; 10:665–688. es_ES
dc.relation.references Lewis J. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int J Hum-Comput Interact 1995; 7(1):57–78. es_ES
dc.relation.references Lewis JR. Psychometric evaluation of the PSSUQ using data from five years of usability studies. Int J Hum-Comput Interact 2002; 14(3–4):463–488. es_ES
dc.relation.references Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52(3–4):591–611. es_ES
dc.relation.references Chhatwal J, Alagoz O, Lindstrom MJ, Kahn Jr CE, Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009; 192:1117–1127. es_ES


This item appears in the following Collection(s)

Show simple item record