Extendible spaces

Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)

Autores

Schellekens, M.P.

Directores

Unidades organizativas

Handle

https://riunet.upv.es/handle/10251/82080

Cita bibliográfica

Schellekens, M. (2002). Extendible spaces. Applied General Topology. 3(2):169-184. https://doi.org/10.4995/agt.2002.2061

Titulación

Resumen

[EN] The domain theoretic notion of lifting allows one to extend a partial order in a trivial way by a minimum. In the context of Quantitative Domain Theory partial orders are represented as quasi-metric spaces. For such spaces, the notion of the extension by an extremal element turns out to be non trivial. To some extent motivated by these considerations, we characterize the directed quasi-metric spaces extendible by an extremum. The class is shown to include the S-completable directef quasi-metric spaces. As an application of this result, we show that for the case of the invariant quasi-metric (semi)lattices, weightedness can be characterized by order convexity with the extension property.

Palabras clave

Quasi-metric, Directed space, Extension

ISSN

1576-9402

ISBN

Fuente

Applied General Topology

DOI

10.4995/agt.2002.2061

Versión del editor

https://doi.org/10.4995/agt.2002.2061

dc.description.uri