Mostrar el registro sencillo del ítem
dc.contributor.author | Borràs-Ferrís, Joan | es_ES |
dc.contributor.author | Sánchez Tovar, Rita | es_ES |
dc.contributor.author | Blasco-Tamarit, E. | es_ES |
dc.contributor.author | Fernández Domene, Ramón Manuel | es_ES |
dc.contributor.author | Garcia-Anton, Jose | es_ES |
dc.date.accessioned | 2017-06-02T10:57:09Z | |
dc.date.available | 2017-06-02T10:57:09Z | |
dc.date.issued | 2016-04-01 | |
dc.identifier.issn | 0013-4686 | |
dc.identifier.uri | http://hdl.handle.net/10251/82254 | |
dc.description.abstract | This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tube-tops, which is related to an increase of the photocurrent in the photoelectrochemical water splitting. Besides, the photogenerated electron-hole pairs are facilitated by Li+ intercalation. Finally, this work confirms that there is a synergistic effect between Re and Li+ intercalation. | es_ES |
dc.description.sponsorship | The authors would like to express their gratitude for the financial support to the Ministerio de Economia y Competitividad (CTQ2013-42494-R), for its help in the Laser Raman Microscope acquisition (UPOVO8-3E-012), and for the co-finance by the European Social Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Electrochimica Acta | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | TiO2 nanotubes | es_ES |
dc.subject | hydrodynamic conditions | es_ES |
dc.subject | water splitting | es_ES |
dc.subject | electrochemical impedance spectroscopy (EIS) | es_ES |
dc.subject | Mott-Schottky analysis | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Effect of Reynolds number and lithium cation insertion on titanium anodization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.electacta.2016.02.160 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2013-42494-R/ES/DESARROLLO DE FOTOANODOS CON NUEVAS NANOESTRUCTURAS DE OXIDOS METALICOS PARA LA PRODUCCION DE ENERGIA Y DESTRUCCION DE CONTAMINANTES CON LUZ SOLAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//UPOV08-3E-012/ES/MICROSCOPIO LASER CONFOCAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Borràs-Ferrís, J.; Sánchez Tovar, R.; Blasco-Tamarit, E.; Fernández Domene, RM.; Garcia-Anton, J. (2016). Effect of Reynolds number and lithium cation insertion on titanium anodization. Electrochimica Acta. 196:24-32. https://doi.org/10.1016/j.electacta.2016.02.160 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1016/j.electacta.2016.02.160 | es_ES |
dc.description.upvformatpinicio | 24 | es_ES |
dc.description.upvformatpfin | 32 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 196 | es_ES |
dc.relation.senia | 303669 | es_ES |
dc.identifier.eissn | 1873-3859 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Social Fund | es_ES |