Resumen:
|
Low fuel consumption is one of the main requirement for current
internal combustion engines for passenger car applications. One of the
most used strategies to achieve this goal is to use downsized engines
(smaller engines ...[+]
Low fuel consumption is one of the main requirement for current
internal combustion engines for passenger car applications. One of the
most used strategies to achieve this goal is to use downsized engines
(smaller engines while maintaining power) what implies the usage of
turbochargers. The coupling between both machines (the turbocharger
and the internal combustion engines) presents many difficulties due to
the different nature between turbomachines and reciprocating machines.
These difficulties make the optimal design of the turbocharged internal
combustion engines a complicated issue.
In these thesis a strong effort has been made to improve the global
understanding of different physical phenomena occurring in turbochargers
and in turbocharged engines. The work has been focused on the 1D
modelling of the phenomena since 1D tools currently play a major role
in the engine design process. Both experimental and modelling efforts
have been made to understand the heat transfer and gas flow processes in
turbochargers. Previously to the experimental analysis a literature review
has been made in which the state of the art of heat transfer and gas flow
modelling in turbochargers have been analysed.
The experimental effort of the thesis has been focused on measuring
different turbochargers in the gas stand and the engine test bench. In the
first case, the gas stand, a more controlled environment, has been used
to perform tests at different conditions. Hot tests with insulated and not
insulated turbocharger have been made to characterise the external heat
transfer. Moreover, adiabatic tests have been made to compare the effect of
the heat transfer on different turbocharger variables and for the validation
of the turbine gas flow models. In the engine test bench full and partial
load tests have been made for model validation purposes.
For the models development task, the work has been divided in heat
flow models and gas flow models. In the first case, a general heat transfer
model for turbochargers has been proposed based on the measured
turbochargers and data available from previous works of the literature.
This model includes a procedure of conductive conductances estimation,
internal and external convection correlations and radiation estimation procedure.
In the case of the gas flow modelling, an extended model for VGT
performance maps extrapolation for both the efficiency and the mass flow
has been developed as well as a model for discharge coefficient prediction
in valves for two stage turbochargers.
Finally, the models have been fully validated coupling them with a
1D modelling software simulating both the gas stand and the whole engine.
On the one hand, the results of the validation show that compressor
and turbine outlet temperature prediction is highly improved using the
developed models. This results prove that the turbocharger heat transfer
phenomena are important not only for partial load and transient simulation
but also in full loads. On the other hand, the VGT extrapolation model
accuracy is high even at off-design conditions.
[-]
El bajo consumo de combustible es uno de los principales requerimientos
de los motores de combustión interna actuales para aplicaciones de
coches de pasajeros. Una de las estrategias más usadas para conseguir ese
fin es ...[+]
El bajo consumo de combustible es uno de los principales requerimientos
de los motores de combustión interna actuales para aplicaciones de
coches de pasajeros. Una de las estrategias más usadas para conseguir ese
fin es el uso de motores "downsized" (motores más pequeños con la misma
potencia) lo que implica el uso de turbocompresores. El acoplamiento entre
ambas máquinas (el turbocompresor y el motor de combustión alternativo)
presenta muchas dificultades debido a la diferente naturaleza entre las
turbomáquinas y las máquinas alternativas. Estas dificultades convierten
el diseño óptimo de los motores de combustión interna sobrealimentados
en un asunto complicado.
En esta tesis se ha realizado un importante esfuerzo para mejorar el
entendimiento global de los diferentes fenómenos físicos que ocurren en
los turbocompresores y en los motores sobrealimentados. El trabajo se ha
centrado en el modelado 1D de los fenómenos puesto que las herramientas
1D juegan actualmente un papel principal en el proceso de diseño del
motor. Se han realizado tanto esfuerzos experimentales como de modelado
para el entendimiento de los procesos de transmisión de calor y de flujo de
gases en turbocompresores. Previamente al análisis experimental se ha
realizado una revisión de la literatura disponible en la que se ha analizado
el estado del arte del modelado de transmisión de calor y flujo de gases en
turbocompresores.
El esfuerzo experimental de la tesis se ha centrado en la medida de
diferentes turbocompresores en el banco de gas y en el banco motor. En el
primer caso, se ha utilizado el banco de gas, un ambiente más controlado,
para realizar ensayos en diferentes condiciones. Se han realizado ensayos
calientes con y sin aislamiento del turbocompresor para caracterizar el
flujo de calor externo. Además, se han realizado ensayos adiabáticos para
comparar el efecto de la transmisión de calor sobre diferentes variables
del turbocompresor y para la validación de los modelos de flujo de gases de
la turbina. En el banco motor se han realizado ensayos a plena carga y a
cargas parciales para usarlos en la validación.
Para la tarea del desarrollo de los modelos, el trabajo se dividió en
modelos de flujo de calor y modelos de flujo de gases. En el primer caso, se
ha propuesto un modelo general de transmisión de calor para turbocompresores
basado en los turbocompresores medidos y en datos disponibles
de trabajos previos de la literatura. Este modelo incluye un procedimiento
para la estimación de las conductancias conductivas, correlaciones de convección
interna y externa y un procedimiento de estimación de la radiación.
En el caso del modelado de flujo de gases, se ha desarrollado un modelo
extendido para la extrapolación de mapas de funcionamiento de TGV tanto
para el rendimiento como para el gasto másico además del modelo de
predicción de coeficientes de descarga en válvulas de turbocompresores de
doble etapa.
Finalmente, los modelos han sido completamente validados con su
acoplamiento a un software de modelado 1D simulando tanto el banco de
turbos como el motor completo. Por un lado, los resultados de la validación
señalan que la predicción de las temperaturas de salida de compresor y
turbina mejora notablemente usando los modelos desarrollados. Este resultado
demuestra que los fenómenos de transmisión de calor son importantes
no sólo en simulaciones de cargas parciales y de transitorios sino también
en plenas cargas. Por otro lado, la precisión del modelo de extrapolación de
TGV es alta incluso en condiciones fuera de diseño.
[-]
El baix consum de combustible és un dels principals requeriments dels
motors de combustió interna actuals per a aplicacions de cotxes de passatgers.
Una de les estratègies més usades per a aconseguir eixe fi és l'ús de
motors ...[+]
El baix consum de combustible és un dels principals requeriments dels
motors de combustió interna actuals per a aplicacions de cotxes de passatgers.
Una de les estratègies més usades per a aconseguir eixe fi és l'ús de
motors "downsized" (motors més xicotets amb la mateixa potència) el que
implica l'ús de turbocompressors. L'adaptament entre ambdues màquines
(el turbocompressor i el motor de combustió alternatiu) presenta moltes
dificultats degut a la diferent naturalesa entre les turbomàquines i les
màquines alternatives. Estes dificultats convertixen el disseny òptim dels
motors de combustió interna sobrealimentats en un assumpte complicat.
En esta tesi s'ha realitzat un important esforç per a millorar l'enteniment
global dels diferents fenòmens físics que ocorren en els turbocompressors
i en els motors sobrealimentats. El treball s'ha centrat en el modelatge
1D dels fenòmens ja que les ferramentes 1D juguen actualment un paper
principal en el procés de disseny del motor. S'han realitzat tant esforços
experimentals com de modelatge per a l'enteniment dels processos de
transmissió de calor i de flux de gasos en turbocompressors. Prèviament a
l'anàlisi experimental s'ha realitzat una revisió de la literatura disponible
en què s'ha analitzat l'estat de l'art del modelatge de transmissió de calor i
flux de gasos en turbocompressors.
L'esforç experimental de la tesi s'ha centrat en la mesura de diferents
turbocompressors en el banc de gas i en el banc motor. En el primer cas,
s'ha utilitzat el banc de gas, un ambient més controlat, per a realitzar
assajos en diferents condicions. S'han realitzat assajos calents amb i sense
aïllament del turbocompressor per a caracteritzar el flux de calor extern.
A més, s'han realitzat assajos adiabàtics per a comparar l'efecte de la
transmissió de calor sobre diferents variables del turbocompressor i per a
la validació dels models de flux de gasos de la turbina. En el banc motor
s'han realitzat assajos a plena càrrega i a càrregues parcials per a usar-los
en la validació.
Per a la tasca del desenvolupament dels models, el treball es va dividir
en models de flux de calor i models de flux de gasos. En el primer cas,
s'ha proposat un model general de transmissió de calor per a turbocompressors
basat en els turbocompressors mesurats i en dades disponibles
de treballs previs de la literatura. Este model inclou un procediment per
a l'estimació de les conductàncies conductivas, correlacions de convecció
interna i externa i un procediment d'estimació de la radiació. En el cas
del modelatge de flux de gasos, s'ha desenvolupat un model estés per a
l'extrapolació de mapes de funcionament de TGV tant per al rendiment
com per al gasto màssic a més del model de predicció de coeficients de
descàrrega en vàlvules de turbocompressors de doble etapa.
Finalment, els models han sigut completament validats amb el seu
adaptament a un software de modelatge 1D simulant tant el banc de
turbos com el motor complet. D'una banda, els resultats de la validació
assenyalen que la predicció de les temperatures d'eixida de compressor i
turbina millora notablement usant els models desenrotllats. Este resultat
demostra que els fenòmens de transmissió de calor són importants no sols
en simulacions de càrregues parcials i de transitoris sinó també en plenes
càrregues. D'altra banda, la precisió del model d'extrapolació de TGV és
alta inclús en condicions fora de disseny.
[-]
|