Mostrar el registro sencillo del ítem
dc.contributor.author | Antoni-Alandes, Regina | es_ES |
dc.contributor.author | Dietrich, Daniela | es_ES |
dc.contributor.author | Bennett, Malcolm J. | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.contributor.editor | Duque, Paula | es_ES |
dc.date.accessioned | 2017-06-06T10:12:35Z | |
dc.date.available | 2017-06-06T10:12:35Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-1-4939-3354-9 | |
dc.identifier.isbn | 978-1-4939-3356-3 | |
dc.identifier.issn | 1064-3745 | |
dc.identifier.uri | http://hdl.handle.net/10251/82415 | |
dc.description.abstract | [EN] Hydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the fi eld. This system uses split agar plates containing an osmolyte only in a region of the plate in order to generate a water potential gradient. Arabidopsis seedlings are placed on the MS agar plate so that their root tips are near the junction between plain MS medium and the region supplemented with the osmolyte. This elicits a hydrotropic response in Arabidopsis roots that can be measured as the root curvature angle. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer New York | es_ES |
dc.relation.ispartof | Environmental Responses in Plants | es_ES |
dc.relation.ispartofseries | Methods in Molecular Biology;1398 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hydrotropism | es_ES |
dc.subject | Water potential gradient | es_ES |
dc.subject | Root curvature angle | es_ES |
dc.subject | Moisture gradient | es_ES |
dc.subject | Root growth | es_ES |
dc.subject | Sorbitol | es_ES |
dc.subject | ABA | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Hydrotropism: Analysis of the Root Response to a Moisture Gradient | es_ES |
dc.type | Artículo | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-1-4939-3356-3_1 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Antoni-Alandes, R.; Dietrich, D.; Bennett, MJ.; Rodríguez Egea, PL. (2016). Hydrotropism: Analysis of the Root Response to a Moisture Gradient. Environmental Responses in Plants. 3-9. doi:10.1007/978-1-4939-3356-3_1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/978-1-4939-3356-3_1 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 332383 | es_ES |
dc.description.references | Verslues PE, Agarwal M, Katiyar-Agarwal S et al (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539 | es_ES |
dc.description.references | Roy R, Bassham DC (2014) Root growth movements: waving and skewing. Plant Sci 221:42–47 | es_ES |
dc.description.references | Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447 | es_ES |
dc.description.references | Eapen D, Barroso ML, Campos ME et al (2003) A no hydrotropic response (nhr1) root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546 | es_ES |
dc.description.references | Kobayashi A, Takahashi A, Kakimoto Y et al (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729 | es_ES |
dc.description.references | Takahashi N, Goto N, Okada K et al (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211 | es_ES |
dc.description.references | Miyazawa Y, Takahashi A, Kobayashi A et al (2009) GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840 | es_ES |
dc.description.references | Saucedo M, Ponce G, Campos M et al (2012) An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J Exp Bot 63:3587–3601 | es_ES |
dc.description.references | Antoni R, Gonzalez-Guzman M, Rodriguez L et al (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:931–941 | es_ES |
dc.description.references | Murashige T, Skoog F (1962) A revised medium for rapid growth and Bio assays with tobacco tissue cultures. Physiol Plant 15:473–497 | es_ES |
dc.description.references | Wells DM, French AP, Naeem A et al (2012) Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philos Trans R Soc B: Biol Sci 367:2245 | es_ES |
dc.description.references | Moriwaki T, Miyazawa Y, Fujii N et al (2012) Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368 | es_ES |