Mostrar el registro sencillo del ítem
dc.contributor.author | Flexas, Jaume | es_ES |
dc.contributor.author | Niinemets, Ülo | es_ES |
dc.contributor.author | Gallé, Alexandre | es_ES |
dc.contributor.author | Barbour, Margaret M. | es_ES |
dc.contributor.author | Centritto, Mauro | es_ES |
dc.contributor.author | Diaz-Espejo, Antonio | es_ES |
dc.contributor.author | Douthe, Cyril | es_ES |
dc.contributor.author | Galmés, Jeroni | es_ES |
dc.contributor.author | Ribas-Carbo, Miquel | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.contributor.author | Rosello, Francesc | es_ES |
dc.contributor.author | Soolanayakanahally, Raju | es_ES |
dc.contributor.author | Tomas, Magdalena | es_ES |
dc.contributor.author | Wright, Ian J. | es_ES |
dc.contributor.author | Farquhar, Graham D. | es_ES |
dc.contributor.author | Medrano, Hipólito | es_ES |
dc.date.accessioned | 2017-06-06T12:15:30Z | |
dc.date.available | 2017-06-06T12:15:30Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 0166-8595 | |
dc.identifier.uri | http://hdl.handle.net/10251/82422 | |
dc.description.abstract | [EN] A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (A (N)) relative to stomatal conductance (g (s)). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (g (m)), g (s), and foliage A (N), it was shown that both g (s) and g (m) limit A (N), although the relative importance of each of the two conductances depends on species and conditions. Based on Fick's law of diffusion, intrinsic WUE (the ratio A (N)/g (s)) should correlate on the ratio g (m)/g (s), and not g (m) itself. Such a correlation is indeed often observed in the data. However, since besides diffusion A (N) also depends on photosynthetic capacity (i.e., V (c,max)), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both A (N) and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced g (s) or enhanced g (m). Although increasing g (m) alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in g (s). We conclude that for simultaneous improvement of A (N) and WUE, genetic manipulation of g (m) should avoid parallel changes in g (s), and we suggest that the appropriate trait for selection for enhanced WUE is increased g (m)/g (s). | es_ES |
dc.description.sponsorship | This work was partly supported by the Plan Nacional, Spain, contracts AGL2002-04525-CO2-01 (H. M.), BFU2008-1072-E/BFI and BFU2011-23294 (M. R.-C. and J.F.), AGL2009-07999 (J.G.), and MTM2009-07165 (F. R.); the Foundation for Research, Science and Technology, New Zealand, contract C09X0701 (M. M. B); the Australian Research Council, contract FT0992063 (M. M. B), FT100100910 (I.J.W), and DP1097276 (G. D. F.); the Estonian Ministry of Science and Education, (institutional grant IUT-8-3); the European Commission through the European Regional Fund (the Center of Excellence in Environmental Adaptation) (U.N.); and a collaboration project between the Estonian Academy of Sciences and the Spanish CSIC (H. M., U.N.). | |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Photosynthesis Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Photosynthesis | es_ES |
dc.subject | Water-use efficiency | es_ES |
dc.subject | Stomatal conductance | es_ES |
dc.subject | Mesophyll conductance | es_ES |
dc.subject | Meta-analysis | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11120-013-9844-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Future Fellowships/FT0992063/AU/Novel laser isotopic techniques to assess the potential for water-use efficiency improvement of Australian crops/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2008-04525-C02-01/ES/Efectos de la conductividad hidráulica, la conductancia del mesófilo y del control del desarrollo vegetativo en la eficiencia en el uso del agua en la vid: Variaciones ambientales y genéticas/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FRST//C09X0701/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Future Fellowships/FT100100910/AU/Towards a trait-based plant ecology: new directions in leaf economics research/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/HM//IUT-8-3/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARC/Discovery Projects/DP1097276/AU/Carbon uptake and water use by plants: is there pre-stomatal control?/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2011-23294/ES/CONDUCTANCIA DEL MESOFILO AL CO2: MECANISMOS Y EVOLUCION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2008-01072-E/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-07999/ES/Mejora De La Eficiencia Fotosintetica Mediante La Exploracion De La Variabilidad Natural En Rubisco/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-07165/ES/Grafos En Biologia Computacional/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Flexas, J.; Niinemets, Ü.; Gallé, A.; Barbour, MM.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.... (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research. 117(1-3):45-59. https://doi.org/10.1007/s11120-013-9844-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11120-013-9844-z | es_ES |
dc.description.upvformatpinicio | 45 | es_ES |
dc.description.upvformatpfin | 59 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.description.issue | 1-3 | es_ES |
dc.relation.senia | 259605 | es_ES |
dc.identifier.eissn | 1573-5079 | |
dc.identifier.pmid | 23670217 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Foundation for Research, Science and Technology, Nueva Zelanda | |
dc.contributor.funder | Australian Research Council | |
dc.contributor.funder | Estonian Ministry of Science and Education | |
dc.description.references | Araus JL, Slafer GA, Royo C, Dolores Serre M (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412 | es_ES |
dc.description.references | Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637 | es_ES |
dc.description.references | Barbour MM, Warren CR, Farquhar GD, Forrester G, Brown H (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33:1176–1185 | es_ES |
dc.description.references | Bickford CP, Hanson DT, McDowell NG (2010) Influence of diurnal variation in mesophyll conductance on modeled 13C discrimination: results from a field study. J Exp Bot 61:3223–3233 | es_ES |
dc.description.references | Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168 | es_ES |
dc.description.references | Borel C, Frey A, Marion-Poll A, Tardieu F, Simmoneau T (2001) Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought? Plant Cell Environ 24:477–489 | es_ES |
dc.description.references | Borlaug N (2000) The green revolution revisited and the road ahead. Nobelprize.org.24. http://www.nobelprize.org/nobel_prizes/peace/laureates/1970/borlaug-article.html . Accessed 15 Jan 2013 | es_ES |
dc.description.references | Boyer JS (1996) Advances in drought tolerance in plants. Adv Agron 56:187–218 | es_ES |
dc.description.references | Centritto M, Lauteri M, Monteverdi MC, Serraj R (2009) Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stress. J Exp Bot 60:2325–2339 | es_ES |
dc.description.references | Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219 | es_ES |
dc.description.references | Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460 | es_ES |
dc.description.references | CSIRO Plant Industry (2004) Drysdale—a world’s first. CSIRO Plant Industry Communication Group. http://www.csiro.au/files/files/p2jr.pdf . Accessed 15 Jan 2013 | es_ES |
dc.description.references | Dai A (2011) Drought under global warming: a review. Clim Change 2:45–65 | es_ES |
dc.description.references | De Lucia EH, Whitehead W, Clearwater MJ (2003) The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum. Funct Plant Biol 30:1197–1204 | es_ES |
dc.description.references | Diaz-Espejo A, Nicolás E, Fernández JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933 | es_ES |
dc.description.references | Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13 | es_ES |
dc.description.references | Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248 | es_ES |
dc.description.references | Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345 | es_ES |
dc.description.references | Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90 | es_ES |
dc.description.references | Farquhar GD, Buckley TN, Miller JM (2002) Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36:625–637 | es_ES |
dc.description.references | Fereres E, Connor D (2004) Sustainable water management in agriculture. In: Challenges of the new water policies for the XXI century: Proceedings of the seminar on challenges of the new water policies for the 21st century, Valencia, 29–31 October 2002, Taylor & Francis, London, p. 157 | es_ES |
dc.description.references | Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471 | es_ES |
dc.description.references | Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279 | es_ES |
dc.description.references | Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006a) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439 | es_ES |
dc.description.references | Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006b) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82 | es_ES |
dc.description.references | Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298 | es_ES |
dc.description.references | Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–631 | es_ES |
dc.description.references | Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbo M, Tomàs M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121 | es_ES |
dc.description.references | Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Diaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84 | es_ES |
dc.description.references | Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22:1337–1349 | es_ES |
dc.description.references | Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded Landbouwhogeseh Wageningen 59(13):1–68 | es_ES |
dc.description.references | Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579 | es_ES |
dc.description.references | Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93 | es_ES |
dc.description.references | Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre J (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ 34:245–260 | es_ES |
dc.description.references | Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849 | es_ES |
dc.description.references | Gregory PJ (2004) Agronomic approaches to increasing water use efficiency. In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell Publishing Ltd., Oxford, pp 142–167 | es_ES |
dc.description.references | Hanba YT, Miyazawa S-I, Terashima I (1999) The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm temperate forests. Funct Ecol 13:632–639 | es_ES |
dc.description.references | Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529 | es_ES |
dc.description.references | Harley PC, Loreto F, Dimarco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436 | es_ES |
dc.description.references | Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514 | es_ES |
dc.description.references | Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684 | es_ES |
dc.description.references | IPCC (2007) Climate change 2007: the physical science basis. In: Solomon SD, Qin M, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge | es_ES |
dc.description.references | Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 11:1027–1045 | es_ES |
dc.description.references | Jobbagy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Glob Change Biol 10:1299–1312 | es_ES |
dc.description.references | Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration, and energy status of MSC16 cucumber (Cucumis sativus L.) mutant. Physiol Plant 131:527–541 | es_ES |
dc.description.references | Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666 | es_ES |
dc.description.references | Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599 | es_ES |
dc.description.references | Kogami H, Hanba YT, Kibe T, Terashima I, Mazusawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538 | es_ES |
dc.description.references | Lauteri M, Scartazza A, Guido MC, Brugnoli E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol 11:675–683 | es_ES |
dc.description.references | Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53:581–590 | es_ES |
dc.description.references | Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15:873–899 | es_ES |
dc.description.references | Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401 | es_ES |
dc.description.references | Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443 | es_ES |
dc.description.references | Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water-use efficiency in tomato. Science 243:1725–1728 | es_ES |
dc.description.references | Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870 | es_ES |
dc.description.references | Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226 | es_ES |
dc.description.references | Miyazawa S-I, Yoshimura S, Shinazaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:553–564 | es_ES |
dc.description.references | Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc B 363:639–658 | es_ES |
dc.description.references | Munoz P, Voltas J, Araus JL, Igartua E, Romagosa I (1998) Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breed 117:531–535 | es_ES |
dc.description.references | Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099 | es_ES |
dc.description.references | Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Kroliwoski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455 | es_ES |
dc.description.references | Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566 | es_ES |
dc.description.references | Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 28:1552–1566 | es_ES |
dc.description.references | Niinemets Ü, Diaz-Espejo A, Flexas J, Galmés J, Warren CR (2009a) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270 | es_ES |
dc.description.references | Niinemets Ü, Diaz-Espejo A, Flexas J, Galmés J, Warren CR (2009b) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282 | es_ES |
dc.description.references | Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26:136–142 | es_ES |
dc.description.references | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104:8891–8896 | es_ES |
dc.description.references | Nilson SE, Assmann SM (2007) The control of transpiration. Insights from Arabidopsis. Plant Physiol 143:19–27 | es_ES |
dc.description.references | Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Towards a synthesis with Atriplex. Springer, Berlin | es_ES |
dc.description.references | Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and futures directions. Ann Appl Biol 147:211–226 | es_ES |
dc.description.references | Peguero-Pina JJ, Flexas J, Galmés J, Niinemets U, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35:2121–2129 | es_ES |
dc.description.references | Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55 | es_ES |
dc.description.references | Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53:2423–2430 | es_ES |
dc.description.references | Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207 | es_ES |
dc.description.references | Price D, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A, Badger M (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193:331–340 | es_ES |
dc.description.references | Price D, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26 | es_ES |
dc.description.references | Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745 | es_ES |
dc.description.references | Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636 | es_ES |
dc.description.references | Rockström J, Lannerstad M, Falkenmark M (2007) Assessing the water challenge of a new green revolution in developing countries. PNAS 104:6253–6260 | es_ES |
dc.description.references | Rubio S, Rodrigues A, Saez A, Dizon MB, Gallé A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases TYPE 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355 | es_ES |
dc.description.references | Rytter RM (2005) Water use efficiency, carbon isotope discrimination and biomass production of two sugar beet varieties under well-watered and dry conditions. J Agron Crop Sci 191:426–438 | es_ES |
dc.description.references | Sack L, Dietrich EM, Streeter C, Sánchez-Gómez D, Holbrook NM (2008) Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc Natl Acad Sci USA 105:1567–1572 | es_ES |
dc.description.references | Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodríguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB11. Plant Physiol 141:1389–1399 | es_ES |
dc.description.references | Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327–330 | es_ES |
dc.description.references | Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454 | es_ES |
dc.description.references | Sharkey TD, Vassey TL, Vanderveer PJ, Vierstra RD (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabaccum L.) having excess phytochrome. Planta 185:287–296 | es_ES |
dc.description.references | Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438 | es_ES |
dc.description.references | Shi Z, Liu S, Liu X, Centritto M (2006) Altitudinal variation in photosynthetic capacity, diffusional conductance and δ13C of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiol Plant 128:722–731 | es_ES |
dc.description.references | Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ 32:1821–1832 | es_ES |
dc.description.references | Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157 | es_ES |
dc.description.references | Tholen D, Boom C, Noguchi K, Ueda S, Kata T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700 | es_ES |
dc.description.references | Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103 | es_ES |
dc.description.references | Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677 | es_ES |
dc.description.references | Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Tosens T, Vislap V, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot. doi: 10.1093/jxb/ert086 | es_ES |
dc.description.references | Tosens T, Niinemets Ü, Westoby M, Wright IJ (2012) Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 63:5105–5119 | es_ES |
dc.description.references | Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4 | es_ES |
dc.description.references | Vrábl D, Vaskova M, Hronkova M, Flexas J, Santrucek J (2009) Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J Exp Bot 60:2315–2323 | es_ES |
dc.description.references | Warren CR (2006) Estimating the internal conductance to CO2 movement. Funct Plant Biol 33:431–442 | es_ES |
dc.description.references | Warren CR (2008a) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487 | es_ES |
dc.description.references | Warren CR (2008b) Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J Exp Bot 59:324–327 | es_ES |
dc.description.references | Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29:192–201 | es_ES |
dc.description.references | Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067 | es_ES |
dc.description.references | Whitney M, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35 | es_ES |
dc.description.references | Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709 | es_ES |
dc.description.references | Williams TG, Flanagan LB, Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2, and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol 112:319–326 | es_ES |
dc.description.references | Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426 | es_ES |
dc.description.references | Wright IJ, Reich PB, Westoby M (2003) Leaf-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111 | es_ES |
dc.description.references | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulías J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The world-wide leaf economics spectrum. Nature 428:821–827 | es_ES |
dc.description.references | Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848 | es_ES |
dc.description.references | Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261 | es_ES |