- -

Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flexas, Jaume es_ES
dc.contributor.author Niinemets, Ülo es_ES
dc.contributor.author Gallé, Alexandre es_ES
dc.contributor.author Barbour, Margaret M. es_ES
dc.contributor.author Centritto, Mauro es_ES
dc.contributor.author Diaz-Espejo, Antonio es_ES
dc.contributor.author Douthe, Cyril es_ES
dc.contributor.author Galmés, Jeroni es_ES
dc.contributor.author Ribas-Carbo, Miquel es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.contributor.author Rosello, Francesc es_ES
dc.contributor.author Soolanayakanahally, Raju es_ES
dc.contributor.author Tomas, Magdalena es_ES
dc.contributor.author Wright, Ian J. es_ES
dc.contributor.author Farquhar, Graham D. es_ES
dc.contributor.author Medrano, Hipólito es_ES
dc.date.accessioned 2017-06-06T12:15:30Z
dc.date.available 2017-06-06T12:15:30Z
dc.date.issued 2013-11
dc.identifier.issn 0166-8595
dc.identifier.uri http://hdl.handle.net/10251/82422
dc.description.abstract [EN] A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (A (N)) relative to stomatal conductance (g (s)). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (g (m)), g (s), and foliage A (N), it was shown that both g (s) and g (m) limit A (N), although the relative importance of each of the two conductances depends on species and conditions. Based on Fick's law of diffusion, intrinsic WUE (the ratio A (N)/g (s)) should correlate on the ratio g (m)/g (s), and not g (m) itself. Such a correlation is indeed often observed in the data. However, since besides diffusion A (N) also depends on photosynthetic capacity (i.e., V (c,max)), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both A (N) and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced g (s) or enhanced g (m). Although increasing g (m) alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in g (s). We conclude that for simultaneous improvement of A (N) and WUE, genetic manipulation of g (m) should avoid parallel changes in g (s), and we suggest that the appropriate trait for selection for enhanced WUE is increased g (m)/g (s). es_ES
dc.description.sponsorship This work was partly supported by the Plan Nacional, Spain, contracts AGL2002-04525-CO2-01 (H. M.), BFU2008-1072-E/BFI and BFU2011-23294 (M. R.-C. and J.F.), AGL2009-07999 (J.G.), and MTM2009-07165 (F. R.); the Foundation for Research, Science and Technology, New Zealand, contract C09X0701 (M. M. B); the Australian Research Council, contract FT0992063 (M. M. B), FT100100910 (I.J.W), and DP1097276 (G. D. F.); the Estonian Ministry of Science and Education, (institutional grant IUT-8-3); the European Commission through the European Regional Fund (the Center of Excellence in Environmental Adaptation) (U.N.); and a collaboration project between the Estonian Academy of Sciences and the Spanish CSIC (H. M., U.N.).
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Photosynthesis Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photosynthesis es_ES
dc.subject Water-use efficiency es_ES
dc.subject Stomatal conductance es_ES
dc.subject Mesophyll conductance es_ES
dc.subject Meta-analysis es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11120-013-9844-z
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Future Fellowships/FT0992063/AU/Novel laser isotopic techniques to assess the potential for water-use efficiency improvement of Australian crops/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-04525-C02-01/ES/Efectos de la conductividad hidráulica, la conductancia del mesófilo y del control del desarrollo vegetativo en la eficiencia en el uso del agua en la vid: Variaciones ambientales y genéticas/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FRST//C09X0701/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Future Fellowships/FT100100910/AU/Towards a trait-based plant ecology: new directions in leaf economics research/
dc.relation.projectID info:eu-repo/grantAgreement/HM//IUT-8-3/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARC/Discovery Projects/DP1097276/AU/Carbon uptake and water use by plants: is there pre-stomatal control?/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-23294/ES/CONDUCTANCIA DEL MESOFILO AL CO2: MECANISMOS Y EVOLUCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2008-01072-E/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-07999/ES/Mejora De La Eficiencia Fotosintetica Mediante La Exploracion De La Variabilidad Natural En Rubisco/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-07165/ES/Grafos En Biologia Computacional/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Flexas, J.; Niinemets, Ü.; Gallé, A.; Barbour, MM.; Centritto, M.; Diaz-Espejo, A.; Douthe, C.... (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research. 117(1-3):45-59. https://doi.org/10.1007/s11120-013-9844-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11120-013-9844-z es_ES
dc.description.upvformatpinicio 45 es_ES
dc.description.upvformatpfin 59 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 1-3 es_ES
dc.relation.senia 259605 es_ES
dc.identifier.eissn 1573-5079
dc.identifier.pmid 23670217
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Foundation for Research, Science and Technology, Nueva Zelanda
dc.contributor.funder Australian Research Council
dc.contributor.funder Estonian Ministry of Science and Education
dc.description.references Araus JL, Slafer GA, Royo C, Dolores Serre M (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412 es_ES
dc.description.references Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637 es_ES
dc.description.references Barbour MM, Warren CR, Farquhar GD, Forrester G, Brown H (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33:1176–1185 es_ES
dc.description.references Bickford CP, Hanson DT, McDowell NG (2010) Influence of diurnal variation in mesophyll conductance on modeled 13C discrimination: results from a field study. J Exp Bot 61:3223–3233 es_ES
dc.description.references Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168 es_ES
dc.description.references Borel C, Frey A, Marion-Poll A, Tardieu F, Simmoneau T (2001) Does engineering abscisic acid biosynthesis in Nicotiana plumbaginifolia modify stomatal response to drought? Plant Cell Environ 24:477–489 es_ES
dc.description.references Borlaug N (2000) The green revolution revisited and the road ahead. Nobelprize.org.24. http://www.nobelprize.org/nobel_prizes/peace/laureates/1970/borlaug-article.html . Accessed 15 Jan 2013 es_ES
dc.description.references Boyer JS (1996) Advances in drought tolerance in plants. Adv Agron 56:187–218 es_ES
dc.description.references Centritto M, Lauteri M, Monteverdi MC, Serraj R (2009) Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stress. J Exp Bot 60:2325–2339 es_ES
dc.description.references Christmann A, Hoffmann T, Teplova I, Grill E, Müller A (2005) Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol 137:209–219 es_ES
dc.description.references Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460 es_ES
dc.description.references CSIRO Plant Industry (2004) Drysdale—a world’s first. CSIRO Plant Industry Communication Group. http://www.csiro.au/files/files/p2jr.pdf . Accessed 15 Jan 2013 es_ES
dc.description.references Dai A (2011) Drought under global warming: a review. Clim Change 2:45–65 es_ES
dc.description.references De Lucia EH, Whitehead W, Clearwater MJ (2003) The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum. Funct Plant Biol 30:1197–1204 es_ES
dc.description.references Diaz-Espejo A, Nicolás E, Fernández JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933 es_ES
dc.description.references Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13 es_ES
dc.description.references Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248 es_ES
dc.description.references Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345 es_ES
dc.description.references Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90 es_ES
dc.description.references Farquhar GD, Buckley TN, Miller JM (2002) Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36:625–637 es_ES
dc.description.references Fereres E, Connor D (2004) Sustainable water management in agriculture. In: Challenges of the new water policies for the XXI century: Proceedings of the seminar on challenges of the new water policies for the 21st century, Valencia, 29–31 October 2002, Taylor & Francis, London, p. 157 es_ES
dc.description.references Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471 es_ES
dc.description.references Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279 es_ES
dc.description.references Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006a) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439 es_ES
dc.description.references Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006b) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82 es_ES
dc.description.references Flexas J, Diaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298 es_ES
dc.description.references Flexas J, Ribas-Carbo M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–631 es_ES
dc.description.references Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbo M, Tomàs M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121 es_ES
dc.description.references Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Diaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84 es_ES
dc.description.references Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point in C3 plants. Plant Cell Environ 22:1337–1349 es_ES
dc.description.references Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded Landbouwhogeseh Wageningen 59(13):1–68 es_ES
dc.description.references Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579 es_ES
dc.description.references Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93 es_ES
dc.description.references Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre J (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ 34:245–260 es_ES
dc.description.references Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849 es_ES
dc.description.references Gregory PJ (2004) Agronomic approaches to increasing water use efficiency. In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell Publishing Ltd., Oxford, pp 142–167 es_ES
dc.description.references Hanba YT, Miyazawa S-I, Terashima I (1999) The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm temperate forests. Funct Ecol 13:632–639 es_ES
dc.description.references Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529 es_ES
dc.description.references Harley PC, Loreto F, Dimarco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436 es_ES
dc.description.references Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514 es_ES
dc.description.references Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684 es_ES
dc.description.references IPCC (2007) Climate change 2007: the physical science basis. In: Solomon SD, Qin M, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge es_ES
dc.description.references Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 11:1027–1045 es_ES
dc.description.references Jobbagy EG, Jackson RB (2004) Groundwater use and salinization with grassland afforestation. Glob Change Biol 10:1299–1312 es_ES
dc.description.references Juszczuk IM, Flexas J, Szal B, Dabrowska Z, Ribas-Carbo M, Rychter AM (2007) Effect of mitochondrial genome rearrangement on respiratory activity, photosynthesis, photorespiration, and energy status of MSC16 cucumber (Cucumis sativus L.) mutant. Physiol Plant 131:527–541 es_ES
dc.description.references Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666 es_ES
dc.description.references Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599 es_ES
dc.description.references Kogami H, Hanba YT, Kibe T, Terashima I, Mazusawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538 es_ES
dc.description.references Lauteri M, Scartazza A, Guido MC, Brugnoli E (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct Ecol 11:675–683 es_ES
dc.description.references Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53:581–590 es_ES
dc.description.references Lloyd J, Syvertsen JP, Kriedemann PE, Farquhar GD (1992) Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species. Plant Cell Environ 15:873–899 es_ES
dc.description.references Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401 es_ES
dc.description.references Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443 es_ES
dc.description.references Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water-use efficiency in tomato. Science 243:1725–1728 es_ES
dc.description.references Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870 es_ES
dc.description.references Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J, Leung J (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26:3216–3226 es_ES
dc.description.references Miyazawa S-I, Yoshimura S, Shinazaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:553–564 es_ES
dc.description.references Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc B 363:639–658 es_ES
dc.description.references Munoz P, Voltas J, Araus JL, Igartua E, Romagosa I (1998) Changes over time in the adaptation of barley releases in north-eastern Spain. Plant Breed 117:531–535 es_ES
dc.description.references Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099 es_ES
dc.description.references Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Kroliwoski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455 es_ES
dc.description.references Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566 es_ES
dc.description.references Niinemets U, Cescatti A, Rodeghiero M, Tosens T (2006) Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant Cell Environ 28:1552–1566 es_ES
dc.description.references Niinemets Ü, Diaz-Espejo A, Flexas J, Galmés J, Warren CR (2009a) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270 es_ES
dc.description.references Niinemets Ü, Diaz-Espejo A, Flexas J, Galmés J, Warren CR (2009b) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282 es_ES
dc.description.references Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26:136–142 es_ES
dc.description.references Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007) “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proc Natl Acad Sci USA 104:8891–8896 es_ES
dc.description.references Nilson SE, Assmann SM (2007) The control of transpiration. Insights from Arabidopsis. Plant Physiol 143:19–27 es_ES
dc.description.references Osmond CB, Björkman O, Anderson DJ (1980) Physiological processes in plant ecology. Towards a synthesis with Atriplex. Springer, Berlin es_ES
dc.description.references Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and futures directions. Ann Appl Biol 147:211–226 es_ES
dc.description.references Peguero-Pina JJ, Flexas J, Galmés J, Niinemets U, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35:2121–2129 es_ES
dc.description.references Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55 es_ES
dc.description.references Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53:2423–2430 es_ES
dc.description.references Priault P, Tcherkez G, Cornic G, De Paepe R, Naik R, Ghashghaie J, Streb P (2006) The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion. J Exp Bot 57:3195–3207 es_ES
dc.description.references Price D, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A, Badger M (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193:331–340 es_ES
dc.description.references Price D, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26 es_ES
dc.description.references Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745 es_ES
dc.description.references Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636 es_ES
dc.description.references Rockström J, Lannerstad M, Falkenmark M (2007) Assessing the water challenge of a new green revolution in developing countries. PNAS 104:6253–6260 es_ES
dc.description.references Rubio S, Rodrigues A, Saez A, Dizon MB, Gallé A, Kim T-H, Santiago J, Flexas J, Schroeder JI, Rodriguez PL (2009) Triple loss of function of protein phosphatases TYPE 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol 150:1345–1355 es_ES
dc.description.references Rytter RM (2005) Water use efficiency, carbon isotope discrimination and biomass production of two sugar beet varieties under well-watered and dry conditions. J Agron Crop Sci 191:426–438 es_ES
dc.description.references Sack L, Dietrich EM, Streeter C, Sánchez-Gómez D, Holbrook NM (2008) Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc Natl Acad Sci USA 105:1567–1572 es_ES
dc.description.references Saez A, Robert N, Maktabi MH, Schroeder JI, Serrano R, Rodríguez PL (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB11. Plant Physiol 141:1389–1399 es_ES
dc.description.references Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327–330 es_ES
dc.description.references Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454 es_ES
dc.description.references Sharkey TD, Vassey TL, Vanderveer PJ, Vierstra RD (1991) Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabaccum L.) having excess phytochrome. Planta 185:287–296 es_ES
dc.description.references Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438 es_ES
dc.description.references Shi Z, Liu S, Liu X, Centritto M (2006) Altitudinal variation in photosynthetic capacity, diffusional conductance and δ13C of butterfly bush (Buddleja davidii) plants growing at high elevations. Physiol Plant 128:722–731 es_ES
dc.description.references Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR (2009) Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ 32:1821–1832 es_ES
dc.description.references Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157 es_ES
dc.description.references Tholen D, Boom C, Noguchi K, Ueda S, Kata T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700 es_ES
dc.description.references Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103 es_ES
dc.description.references Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677 es_ES
dc.description.references Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Tosens T, Vislap V, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot. doi: 10.1093/jxb/ert086 es_ES
dc.description.references Tosens T, Niinemets Ü, Westoby M, Wright IJ (2012) Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. J Exp Bot 63:5105–5119 es_ES
dc.description.references Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4 es_ES
dc.description.references Vrábl D, Vaskova M, Hronkova M, Flexas J, Santrucek J (2009) Mesophyll conductance to CO2 transport estimated by two independent methods: effect of variable CO2 concentration and abscisic acid. J Exp Bot 60:2315–2323 es_ES
dc.description.references Warren CR (2006) Estimating the internal conductance to CO2 movement. Funct Plant Biol 33:431–442 es_ES
dc.description.references Warren CR (2008a) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487 es_ES
dc.description.references Warren CR (2008b) Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J Exp Bot 59:324–327 es_ES
dc.description.references Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29:192–201 es_ES
dc.description.references Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067 es_ES
dc.description.references Whitney M, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35 es_ES
dc.description.references Wilkinson S, Corlett JE, Oger L, Davies WJ (1998) Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. A vital role for abscisic acid in preventing excessive water loss even from well-watered plants. Plant Physiol 117:703–709 es_ES
dc.description.references Williams TG, Flanagan LB, Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2, and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol 112:319–326 es_ES
dc.description.references Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426 es_ES
dc.description.references Wright IJ, Reich PB, Westoby M (2003) Leaf-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111 es_ES
dc.description.references Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin FS, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulías J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas E, Villar R (2004) The world-wide leaf economics spectrum. Nature 428:821–827 es_ES
dc.description.references Zhang X, Wollenweber B, Jiang D, Liu F, Zhao J (2008) Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J Exp Bot 59:839–848 es_ES
dc.description.references Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem