- -

An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López-González, Silvia es_ES
dc.contributor.author Aragonés, Verónica es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.contributor.author Sánchez, Flora es_ES
dc.contributor.author Ponz, Fernando es_ES
dc.date.accessioned 2017-06-07T08:59:38Z
dc.date.available 2017-06-07T08:59:38Z
dc.date.issued 2017-05
dc.identifier.issn 0929-1873
dc.identifier.uri http://hdl.handle.net/10251/82497
dc.description.abstract Turnip Mosaic Virus (TuMV) is an economically important potyvirus for which hundreds of hosts have been reported, thus making it a rather exceptional case in the genus. Several viral infectious clones have been generated over the years, which have been useful in deciphering the viral elements involved in the interactions of this virus with the host plant, such as different forms of resistance, gene silencing suppression, host range or host developmental alterations. However, all infectious clones obtained so far correspond to viral isolates within the same phylogenetic cluster, a circumstance biasing our understanding of the peculiarities of this potyvirus. In particular, members of one viral cluster of radish-infecting isolates have been especially reluctant to be copied into infectious clones. This paper reports the construction of an infectious clone of the TuMV isolate JPN 1, belonging to this cluster. The infectious clone maintains all the distinctive biological properties previously described for this viral isolate. The availability of this infectious clone opens the door to many additional studies on the virus, which should allow a deeper understanding of the differential responses to different strains of TuMV in several different hosts. es_ES
dc.description.sponsorship We thank P. Sardaru, C. Yuste-Calvo and L. Zurita for their technical help and support. The research for this paper was financially supported by the INIA-RTA grant 201000098-00-00 to F. Ponz, the Spanish Ministerio de Economia y Competitividad (MINECO) grants AGL2013-49919-EXP and BIO2014-54269-R to J.A.D, and an FPI-INIA grant from MINECO to S. Lopez-Gonzalez. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof European Journal of Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turnip mosaic es_ES
dc.subject JPN 1 es_ES
dc.subject Infectious clone es_ES
dc.subject Brassica sp. es_ES
dc.subject Raphanus sp. es_ES
dc.title An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10658-016-1057-9
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2010-00098-00-00/ES/Genómica funcional vegetal dependiente de pequeños RNAs, estudiada mediante elementos génicos virales. Aplicación a cultivos energéticos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-49919-EXP/ES/DETECCION DE PATOGENOS Y BIOCOMPUTACION MEDIANTE CIRCUITOS REGULADORES EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation López-González, S.; Aragonés, V.; Daros Arnau, JA.; Sánchez, F.; Ponz, F. (2017). An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. European Journal of Plant Pathology. 148(1):207-211. https://doi.org/10.1007/s10658-016-1057-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10658-016-1057-9 es_ES
dc.description.upvformatpinicio 207 es_ES
dc.description.upvformatpfin 211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 148 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 331945 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agbeci, M., Grangeon, R., Nelson, R. S., Zheng, H., & Laliberté, J.-F. (2013). Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathogens, 9(10), e1003683. es_ES
dc.description.references Bedoya, L. C., & Daròs, J. A. (2010). Stability of tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234–240. es_ES
dc.description.references Chen, C. C., Chen, T. C., Raja, J. A., Chang, C. A., Chen, L. W., Lin, S. S., et al. (2007). Effectiveness and stability of heterologous proteins expressed in plants by turnip mosaic virus vector at five different insertion sites. Virus Research, 130(1–2), 210–227. es_ES
dc.description.references Chung, B. Y., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the potyviridae. Proceedings of the National Academy of Sciences of United Stages of America, 105(15), 5897–5902. es_ES
dc.description.references Deng, P., Wu, Z., & Wang, A. (2015). The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virology Journal, 12(1), 1–11. es_ES
dc.description.references Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., et al. (2015). Roles and programming of arabidopsis ARGONAUTE proteins during turnip mosaic virus infection. PLoS Pathogens, 11(3), e1004755. es_ES
dc.description.references Gibbs, A. J., Nguyen, H. D., & Ohshima, K. (2015). The ‘emergence’ of turnip mosaic virus was probably a ‘gene-for-quasi-gene’ event. Current Opinion Virology, 10(C), 20–26. es_ES
dc.description.references Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & Laliberte, J. F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4, 351. es_ES
dc.description.references Hagiwara-Komoda, Y., Choi, S. H., Sato, M., Atsumi, G., Abe, J., Fukuda, J., et al. (2016). Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Science Reports, 6, 21411. es_ES
dc.description.references Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., & Malnoe, P. (1997). Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. Journal of General Virology, 78(Pt 12), 3141–3145. es_ES
dc.description.references Jenner, C. E., & Walsh, J. A. (1996). Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathology, 45(5), 848–856. es_ES
dc.description.references Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Molecular Plant-Microbe Interactions, 16(9), 777–784. es_ES
dc.description.references Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences of the United Stages of America, 93(22), 12400–12405. es_ES
dc.description.references Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., et al. (2014). Genetic analyses of the FRNK motif function of turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant-Microbe Interactions, 27(9), 944–955. es_ES
dc.description.references López-Moya, J. J., & García, J. A. (2000). Construction of a stable and highly infectious introncontaining cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99–107. es_ES
dc.description.references Nguyen, H. D., Tomitaka, Y., Ho, S. Y., Duchene, S., Vetten, H. J., Lesemann, D., et al. (2013). Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS One, 8(2), e55336. es_ES
dc.description.references Nolasco, G., de Blas, C., Torres, V., & Ponz, F. (1993). A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. Journal of Virological Methods, 45(2), 201–218. es_ES
dc.description.references Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z. Y., et al. (2002). Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83(Pt 6), 1511–1521. es_ES
dc.description.references Sánchez, F., MartínezHerrera, D., Aguilar, I., & Ponz, F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55(2), 207–219. es_ES
dc.description.references Sánchez, F., Wang, X., Jenner, C. E., Walsh, J. A., & Ponz, F. (2003). Strains of turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Research, 94(1), 33–43. es_ES
dc.description.references Sánchez, F., Manrique, P., Mansilla, C., Lunello, P., Wang, X., Rodrigo, G., et al. (2015). Viral strain-specific differential alterations in Arabidopsis developmental patterns. Molecular Plant-Microbe Interactions, 28(12), 1304–1315. es_ES
dc.description.references Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(Pt 7), 2087–2098. es_ES
dc.description.references Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiology, 145(4), 1211–1219. es_ES
dc.description.references Timmerman, K. P., & Tu, C. P. (1985). Complete sequence of IS3. Nucleic Acids Research, 13(6), 2127–2139. es_ES
dc.description.references Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A., & Ohshima, K. (2003). The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Molecular Ecology, 12(8), 2099–2111. es_ES
dc.description.references Walsh, J. A., & Jenner, C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3(5), 289. es_ES
dc.description.references Wan, J., Basu, K., Mui, J., Vali, H., Zheng, H., & Laliberte, J. F. (2015). Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. Journal of Virology, 89(24), 12441–12456. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem