Mostrar el registro sencillo del ítem
dc.contributor.author | López-González, Silvia | es_ES |
dc.contributor.author | Aragonés, Verónica | es_ES |
dc.contributor.author | Daros Arnau, Jose Antonio | es_ES |
dc.contributor.author | Sánchez, Flora | es_ES |
dc.contributor.author | Ponz, Fernando | es_ES |
dc.date.accessioned | 2017-06-07T08:59:38Z | |
dc.date.available | 2017-06-07T08:59:38Z | |
dc.date.issued | 2017-05 | |
dc.identifier.issn | 0929-1873 | |
dc.identifier.uri | http://hdl.handle.net/10251/82497 | |
dc.description.abstract | Turnip Mosaic Virus (TuMV) is an economically important potyvirus for which hundreds of hosts have been reported, thus making it a rather exceptional case in the genus. Several viral infectious clones have been generated over the years, which have been useful in deciphering the viral elements involved in the interactions of this virus with the host plant, such as different forms of resistance, gene silencing suppression, host range or host developmental alterations. However, all infectious clones obtained so far correspond to viral isolates within the same phylogenetic cluster, a circumstance biasing our understanding of the peculiarities of this potyvirus. In particular, members of one viral cluster of radish-infecting isolates have been especially reluctant to be copied into infectious clones. This paper reports the construction of an infectious clone of the TuMV isolate JPN 1, belonging to this cluster. The infectious clone maintains all the distinctive biological properties previously described for this viral isolate. The availability of this infectious clone opens the door to many additional studies on the virus, which should allow a deeper understanding of the differential responses to different strains of TuMV in several different hosts. | es_ES |
dc.description.sponsorship | We thank P. Sardaru, C. Yuste-Calvo and L. Zurita for their technical help and support. The research for this paper was financially supported by the INIA-RTA grant 201000098-00-00 to F. Ponz, the Spanish Ministerio de Economia y Competitividad (MINECO) grants AGL2013-49919-EXP and BIO2014-54269-R to J.A.D, and an FPI-INIA grant from MINECO to S. Lopez-Gonzalez. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | European Journal of Plant Pathology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turnip mosaic | es_ES |
dc.subject | JPN 1 | es_ES |
dc.subject | Infectious clone | es_ES |
dc.subject | Brassica sp. | es_ES |
dc.subject | Raphanus sp. | es_ES |
dc.title | An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10658-016-1057-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RTA2010-00098-00-00/ES/Genómica funcional vegetal dependiente de pequeños RNAs, estudiada mediante elementos génicos virales. Aplicación a cultivos energéticos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-49919-EXP/ES/DETECCION DE PATOGENOS Y BIOCOMPUTACION MEDIANTE CIRCUITOS REGULADORES EN PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | López-González, S.; Aragonés, V.; Daros Arnau, JA.; Sánchez, F.; Ponz, F. (2017). An infectious cDNA clone of a radish-infecting Turnip mosaic virus strain. European Journal of Plant Pathology. 148(1):207-211. https://doi.org/10.1007/s10658-016-1057-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10658-016-1057-9 | es_ES |
dc.description.upvformatpinicio | 207 | es_ES |
dc.description.upvformatpfin | 211 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 148 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 331945 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agbeci, M., Grangeon, R., Nelson, R. S., Zheng, H., & Laliberté, J.-F. (2013). Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathogens, 9(10), e1003683. | es_ES |
dc.description.references | Bedoya, L. C., & Daròs, J. A. (2010). Stability of tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234–240. | es_ES |
dc.description.references | Chen, C. C., Chen, T. C., Raja, J. A., Chang, C. A., Chen, L. W., Lin, S. S., et al. (2007). Effectiveness and stability of heterologous proteins expressed in plants by turnip mosaic virus vector at five different insertion sites. Virus Research, 130(1–2), 210–227. | es_ES |
dc.description.references | Chung, B. Y., Miller, W. A., Atkins, J. F., & Firth, A. E. (2008). An overlapping essential gene in the potyviridae. Proceedings of the National Academy of Sciences of United Stages of America, 105(15), 5897–5902. | es_ES |
dc.description.references | Deng, P., Wu, Z., & Wang, A. (2015). The multifunctional protein CI of potyviruses plays interlinked and distinct roles in viral genome replication and intercellular movement. Virology Journal, 12(1), 1–11. | es_ES |
dc.description.references | Garcia-Ruiz, H., Carbonell, A., Hoyer, J. S., Fahlgren, N., Gilbert, K. B., Takeda, A., et al. (2015). Roles and programming of arabidopsis ARGONAUTE proteins during turnip mosaic virus infection. PLoS Pathogens, 11(3), e1004755. | es_ES |
dc.description.references | Gibbs, A. J., Nguyen, H. D., & Ohshima, K. (2015). The ‘emergence’ of turnip mosaic virus was probably a ‘gene-for-quasi-gene’ event. Current Opinion Virology, 10(C), 20–26. | es_ES |
dc.description.references | Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & Laliberte, J. F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4, 351. | es_ES |
dc.description.references | Hagiwara-Komoda, Y., Choi, S. H., Sato, M., Atsumi, G., Abe, J., Fukuda, J., et al. (2016). Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Science Reports, 6, 21411. | es_ES |
dc.description.references | Jakab, G., Droz, E., Brigneti, G., Baulcombe, D., & Malnoe, P. (1997). Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of potato virus Y. Journal of General Virology, 78(Pt 12), 3141–3145. | es_ES |
dc.description.references | Jenner, C. E., & Walsh, J. A. (1996). Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathology, 45(5), 848–856. | es_ES |
dc.description.references | Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., & Walsh, J. A. (2003). The dual role of the potyvirus P3 protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas. Molecular Plant-Microbe Interactions, 16(9), 777–784. | es_ES |
dc.description.references | Johansen, I. E. (1996). Intron insertion facilitates amplification of cloned virus cDNA in Escherichia coli while biological activity is reestablished after transcription in vivo. Proceedings of the National Academy of Sciences of the United Stages of America, 93(22), 12400–12405. | es_ES |
dc.description.references | Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., et al. (2014). Genetic analyses of the FRNK motif function of turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant-Microbe Interactions, 27(9), 944–955. | es_ES |
dc.description.references | López-Moya, J. J., & García, J. A. (2000). Construction of a stable and highly infectious introncontaining cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Research, 68(2), 99–107. | es_ES |
dc.description.references | Nguyen, H. D., Tomitaka, Y., Ho, S. Y., Duchene, S., Vetten, H. J., Lesemann, D., et al. (2013). Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS One, 8(2), e55336. | es_ES |
dc.description.references | Nolasco, G., de Blas, C., Torres, V., & Ponz, F. (1993). A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. Journal of Virological Methods, 45(2), 201–218. | es_ES |
dc.description.references | Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z. Y., et al. (2002). Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83(Pt 6), 1511–1521. | es_ES |
dc.description.references | Sánchez, F., MartínezHerrera, D., Aguilar, I., & Ponz, F. (1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research, 55(2), 207–219. | es_ES |
dc.description.references | Sánchez, F., Wang, X., Jenner, C. E., Walsh, J. A., & Ponz, F. (2003). Strains of turnip mosaic potyvirus as defined by the molecular analysis of the coat protein gene of the virus. Virus Research, 94(1), 33–43. | es_ES |
dc.description.references | Sánchez, F., Manrique, P., Mansilla, C., Lunello, P., Wang, X., Rodrigo, G., et al. (2015). Viral strain-specific differential alterations in Arabidopsis developmental patterns. Molecular Plant-Microbe Interactions, 28(12), 1304–1315. | es_ES |
dc.description.references | Suehiro, N., Natsuaki, T., Watanabe, T., & Okuda, S. (2004). An important determinant of the ability of turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology, 85(Pt 7), 2087–2098. | es_ES |
dc.description.references | Thole, V., Worland, B., Snape, J. W., & Vain, P. (2007). The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiology, 145(4), 1211–1219. | es_ES |
dc.description.references | Timmerman, K. P., & Tu, C. P. (1985). Complete sequence of IS3. Nucleic Acids Research, 13(6), 2127–2139. | es_ES |
dc.description.references | Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A., & Ohshima, K. (2003). The phylogeny of turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Molecular Ecology, 12(8), 2099–2111. | es_ES |
dc.description.references | Walsh, J. A., & Jenner, C. E. (2002). Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3(5), 289. | es_ES |
dc.description.references | Wan, J., Basu, K., Mui, J., Vali, H., Zheng, H., & Laliberte, J. F. (2015). Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. Journal of Virology, 89(24), 12441–12456. | es_ES |