Mostrar el registro sencillo del ítem
dc.contributor.author | Diaz, Maira | es_ES |
dc.contributor.author | Sanchez-Barrena, Maria Jose | es_ES |
dc.contributor.author | Gonzalez Rubio, Juana Maria | es_ES |
dc.contributor.author | Rodríguez Solovey, Leisa Natacha | es_ES |
dc.contributor.author | Fernández, Daniel | es_ES |
dc.contributor.author | Antoni-Alandes, Regina | es_ES |
dc.contributor.author | Yunta, Cristina | es_ES |
dc.contributor.author | Belda Palazón, Borja | es_ES |
dc.contributor.author | González Guzmán, Miguel | es_ES |
dc.contributor.author | Peirats-Llobet, Marta | es_ES |
dc.contributor.author | Menendez, Margarita | es_ES |
dc.contributor.author | Boskovic, Jasminka | es_ES |
dc.contributor.author | Marquez, Jose | es_ES |
dc.contributor.author | Rodríguez Egea, Pedro Luís | es_ES |
dc.contributor.author | Albert, Armando | es_ES |
dc.date.accessioned | 2017-06-07T10:07:54Z | |
dc.date.available | 2017-06-07T10:07:54Z | |
dc.date.issued | 2016-01-19 | |
dc.identifier.issn | 0027-8424 | |
dc.identifier.uri | http://hdl.handle.net/10251/82507 | |
dc.description.abstract | [EN] Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. | es_ES |
dc.description.sponsorship | A.A. and J.A.M. thank the European Syncrotron Radiation Facility and EMBL for access to the synchrotron radiation source. This work was funded by Ministerio de Economia y Competitividad (MINECO) Grants BFU2014-59796-R (to A.A.), BFU2011-28184-C02 (to M.J.S.-B.), and BIO2014-52537-R (to P.L.R.) and Comunidad de Madrid Grant S2010/BMD-2457 (to A.A and M.M.). M.J.S.-B. is supported by Ramon y Cajal Contract RYC-2008-03449 from MINECO and M.D. by a fellowship from Senacyt-Ifarhu. Access to the High Throughput Crystallization facility at European Molecular Biology Laboratory (EMBL) Grenoble was supported by the European Community's Seventh Framework Programme through the Protein Production Platform project (P-CUBE) Grant 227764. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Signaling | es_ES |
dc.subject | ion transport | es_ES |
dc.subject | Membrane biology | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.1512779113 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/227764/EU/Infrastructure for Protein Production Platforms/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2014-59796-R/ES/BASES ESTRUCTURALES DE LOS DETERMINANTES PRINCIPALES DE LA HOMEOSTASIS IONICA EN PLANTAS: AVANCES EN EL MECANISMO REGULADOR DEL TRANSPORTE Y COMPARTIMENTALIZACION IONICA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S2010%2FBMD2457/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RYC-2008-03449/ES/RYC-2008-03449/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2011-28184-C02/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Diaz, M.; Sanchez-Barrena, MJ.; Gonzalez Rubio, JM.; Rodríguez Solovey, LN.; Fernández, D.; Antoni-Alandes, R.; Yunta, C.... (2016). Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proceedings of the National Academy of Sciences. 113(3):E396-E405. https://doi.org/10.1073/pnas.1512779113 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1073/pnas.1512779113 | es_ES |
dc.description.upvformatpinicio | E396 | es_ES |
dc.description.upvformatpfin | E405 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 308292 | es_ES |
dc.identifier.pmcid | PMC4725540 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Comunidad de Madrid | |
dc.contributor.funder | European Commission | |
dc.description.references | Serrano, R., & Rodriguez-Navarro, A. (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13(4), 399-404. doi:10.1016/s0955-0674(00)00227-1 | es_ES |
dc.description.references | Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H + transporters. Current Opinion in Plant Biology, 22, 1-6. doi:10.1016/j.pbi.2014.08.002 | es_ES |
dc.description.references | Batistič, O., & Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(8), 1283-1293. doi:10.1016/j.bbagen.2011.10.012 | es_ES |
dc.description.references | Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 | es_ES |
dc.description.references | McAinsh, M. R., Brownlee, C., & Hetherington, A. M. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature, 343(6254), 186-188. doi:10.1038/343186a0 | es_ES |
dc.description.references | Maierhofer, T., Diekmann, M., Offenborn, J. N., Lind, C., Bauer, H., Hashimoto, K., … Hedrich, R. (2014). Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Science Signaling, 7(342), ra86-ra86. doi:10.1126/scisignal.2005703 | es_ES |
dc.description.references | Allen, G. J., Kwak, J. M., Chu, S. P., Llopis, J., Tsien, R. Y., Harper, J. F., & Schroeder, J. I. (1999). Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. The Plant Journal, 19(6), 735-747. doi:10.1046/j.1365-313x.1999.00574.x | es_ES |
dc.description.references | Lee, S. C., Lan, W.-Z., Kim, B.-G., Li, L., Cheong, Y. H., Pandey, G. K., … Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences, 104(40), 15959-15964. doi:10.1073/pnas.0707912104 | es_ES |
dc.description.references | Sánchez-Barrena, M., Martínez-Ripoll, M., & Albert, A. (2013). Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway. International Journal of Molecular Sciences, 14(3), 5734-5749. doi:10.3390/ijms14035734 | es_ES |
dc.description.references | Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291 | es_ES |
dc.description.references | Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408 | es_ES |
dc.description.references | Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. doi:10.1126/science.1173041 | es_ES |
dc.description.references | Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x | es_ES |
dc.description.references | Nishimura, N., Sarkeshik, A., Nito, K., Park, S.-Y., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2009). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x | es_ES |
dc.description.references | Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.-J., Van Oosten, M. J., … Zhu, J.-K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, 110(27), 11205-11210. doi:10.1073/pnas.1308974110 | es_ES |
dc.description.references | Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., & Shinozaki, K. (2013). Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana. Science Signaling, 6(270), rs8-rs8. doi:10.1126/scisignal.2003509 | es_ES |
dc.description.references | Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: linking elements that control stomatal movement. New Phytologist, 203(1), 44-62. doi:10.1111/nph.12832 | es_ES |
dc.description.references | Lind, C., Dreyer, I., López-Sanjurjo, E. J., von Meyer, K., Ishizaki, K., Kohchi, T., … Hedrich, R. (2015). Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure. Current Biology, 25(7), 928-935. doi:10.1016/j.cub.2015.01.067 | es_ES |
dc.description.references | Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 | es_ES |
dc.description.references | Imes, D., Mumm, P., Böhm, J., Al-Rasheid, K. A. S., Marten, I., Geiger, D., & Hedrich, R. (2013). Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. The Plant Journal, 74(3), 372-382. doi:10.1111/tpj.12133 | es_ES |
dc.description.references | Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., & Zhu, J.-K. (2000). SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. The Plant Cell, 12(9), 1667-1677. doi:10.1105/tpc.12.9.1667 | es_ES |
dc.description.references | Grefen, C., & Blatt, M. R. (2012). Do Calcineurin B-Like Proteins Interact Independently of the Serine Threonine Kinase CIPK23 with the K+ Channel AKT1? Lessons Learned from a Ménage à Trois. Plant Physiology, 159(3), 915-919. doi:10.1104/pp.112.198051 | es_ES |
dc.description.references | Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. doi:10.1073/pnas.122224699 | es_ES |
dc.description.references | Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., … Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. doi:10.1073/pnas.1018921108 | es_ES |
dc.description.references | Núñez-Ramírez, R., Sánchez-Barrena, M. J., Villalta, I., Vega, J. F., Pardo, J. M., Quintero, F. J., … Albert, A. (2012). Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter. Journal of Molecular Biology, 424(5), 283-294. doi:10.1016/j.jmb.2012.09.015 | es_ES |
dc.description.references | Ohta, M., Guo, Y., Halfter, U., & Zhu, J.-K. (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences, 100(20), 11771-11776. doi:10.1073/pnas.2034853100 | es_ES |
dc.description.references | Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. doi:10.1016/j.cell.2006.06.011 | es_ES |
dc.description.references | Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+affinities. Proceedings of the National Academy of Sciences, 107(17), 8023-8028. doi:10.1073/pnas.0912030107 | es_ES |
dc.description.references | Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., … Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 109(26), 10593-10598. doi:10.1073/pnas.1116590109 | es_ES |
dc.description.references | Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973 | es_ES |
dc.description.references | Martens, S., & McMahon, H. T. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nature Reviews Molecular Cell Biology, 9(7), 543-556. doi:10.1038/nrm2417 | es_ES |
dc.description.references | Martens, S., Kozlov, M. M., & McMahon, H. T. (2007). How Synaptotagmin Promotes Membrane Fusion. Science, 316(5828), 1205-1208. doi:10.1126/science.1142614 | es_ES |
dc.description.references | Jahn, R., Lang, T., & Südhof, T. C. (2003). Membrane Fusion. Cell, 112(4), 519-533. doi:10.1016/s0092-8674(03)00112-0 | es_ES |
dc.description.references | Sutter, J.-U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., & Blatt, M. R. (2007). Abscisic Acid Triggers the Endocytosis of the Arabidopsis KAT1 K+ Channel and Its Recycling to the Plasma Membrane. Current Biology, 17(16), 1396-1402. doi:10.1016/j.cub.2007.07.020 | es_ES |
dc.description.references | Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708 | es_ES |
dc.description.references | Larsen, J. B., Jensen, M. B., Bhatia, V. K., Pedersen, S. L., Bjørnholm, T., Iversen, L., … Stamou, D. (2015). Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology, 11(3), 192-194. doi:10.1038/nchembio.1733 | es_ES |
dc.description.references | Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., … Kreuzer, I. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proceedings of the National Academy of Sciences, 110(20), 8296-8301. doi:10.1073/pnas.1211667110 | es_ES |
dc.description.references | Guerrero-Valero, M., Ferrer-Orta, C., Querol-Audi, J., Marin-Vicente, C., Fita, I., Gomez-Fernandez, J. C., … Corbalan-Garcia, S. (2009). Structural and mechanistic insights into the association of PKC -C2 domain to PtdIns(4,5)P2. Proceedings of the National Academy of Sciences, 106(16), 6603-6607. doi:10.1073/pnas.0813099106 | es_ES |
dc.description.references | Guillen, J., Ferrer-Orta, C., Buxaderas, M., Perez-Sanchez, D., Guerrero-Valero, M., Luengo-Gil, G., … Corbalan-Garcia, S. (2013). Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proceedings of the National Academy of Sciences, 110(51), 20503-20508. doi:10.1073/pnas.1316179110 | es_ES |
dc.description.references | Corbalan-Garcia, S., & Gómez-Fernández, J. C. (2014). Signaling through C2 domains: More than one lipid target. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(6), 1536-1547. doi:10.1016/j.bbamem.2014.01.008 | es_ES |
dc.description.references | CHO, W., & STAHELIN, R. (2006). Membrane binding and subcellular targeting of C2 domains. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1761(8), 838-849. doi:10.1016/j.bbalip.2006.06.014 | es_ES |
dc.description.references | Verdaguer, N., Corbalan-Garcia, S., Ochoa, W. F., Fita, I., & Gómez-Fernández, J. C. (1999). Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. The EMBO Journal, 18(22), 6329-6338. doi:10.1093/emboj/18.22.6329 | es_ES |
dc.description.references | Honigmann, A., van den Bogaart, G., Iraheta, E., Risselada, H. J., Milovanovic, D., Mueller, V., … Jahn, R. (2013). Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural & Molecular Biology, 20(6), 679-686. doi:10.1038/nsmb.2570 | es_ES |
dc.description.references | Ausili, A., Corbalán-García, S., Gómez-Fernández, J. C., & Marsh, D. (2011). Membrane docking of the C2 domain from protein kinase Cα as seen by polarized ATR-IR. The role of PIP2. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(3), 684-695. doi:10.1016/j.bbamem.2010.11.035 | es_ES |
dc.description.references | Hermoso, J. A., Lagartera, L., González, A., Stelter, M., García, P., Martínez-Ripoll, M., … Menéndez, M. (2005). Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nature Structural & Molecular Biology, 12(6), 533-538. doi:10.1038/nsmb940 | es_ES |
dc.description.references | Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7(2), 169-177. doi:10.1016/s0969-2126(99)80023-9 | es_ES |
dc.description.references | Ochoa, W. F., Garcia-Garcia, J., Fita, I., Corbalan-Garcia, S., Verdaguer, N., & Gomez-Fernandez, J. C. (2001). Structure of the C2 domain from novel protein kinase Cϵ. A membrane binding model for Ca2+-independent C2 domains. Journal of Molecular Biology, 311(4), 837-849. doi:10.1006/jmbi.2001.4910 | es_ES |
dc.description.references | Fuson, K., Rice, A., Mahling, R., Snow, A., Nayak, K., Shanbhogue, P., … Sutton, R. B. (2014). Alternate Splicing of Dysferlin C2A Confers Ca2+-Dependent and Ca2+-Independent Binding for Membrane Repair. Structure, 22(1), 104-115. doi:10.1016/j.str.2013.10.001 | es_ES |
dc.description.references | Radhakrishnan, A., Stein, A., Jahn, R., & Fasshauer, D. (2009). The Ca2+Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 284(38), 25749-25760. doi:10.1074/jbc.m109.042499 | es_ES |
dc.description.references | Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., … Botella, M. A. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell, 20(12), 3374-3388. doi:10.1105/tpc.108.063859 | es_ES |
dc.description.references | Wang, J., Bello, O., Auclair, S. M., Wang, J., Coleman, J., Pincet, F., … Rothman, J. E. (2014). Calcium sensitive ring-like oligomers formed by synaptotagmin. Proceedings of the National Academy of Sciences, 111(38), 13966-13971. doi:10.1073/pnas.1415849111 | es_ES |
dc.description.references | Jaenicke, R., & Rudolph, R. (1986). [12]Refolding and association of oligomeric proteins. Enzyme Structure Part L, 218-250. doi:10.1016/0076-6879(86)31043-7 | es_ES |
dc.description.references | Goni, G. M., Epifano, C., Boskovic, J., Camacho-Artacho, M., Zhou, J., Bronowska, A., … Lietha, D. (2014). Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proceedings of the National Academy of Sciences, 111(31), E3177-E3186. doi:10.1073/pnas.1317022111 | es_ES |
dc.description.references | Wilkie, A. O. (1994). The molecular basis of genetic dominance. Journal of Medical Genetics, 31(2), 89-98. doi:10.1136/jmg.31.2.89 | es_ES |
dc.description.references | Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x | es_ES |
dc.description.references | Simons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688-699. doi:10.1038/nrm2977 | es_ES |
dc.description.references | McMahon, H. T., & Boucrot, E. (2015). Membrane curvature at a glance. Journal of Cell Science, 128(6), 1065-1070. doi:10.1242/jcs.114454 | es_ES |
dc.description.references | Tapken, W., & Murphy, A. S. (2015). Membrane nanodomains in plants: capturing form, function, and movement. Journal of Experimental Botany, 66(6), 1573-1586. doi:10.1093/jxb/erv054 | es_ES |
dc.description.references | Lingwood, D., & Simons, K. (2007). Detergent resistance as a tool in membrane research. Nature Protocols, 2(9), 2159-2165. doi:10.1038/nprot.2007.294 | es_ES |
dc.description.references | Schuck, P. (2000). Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophysical Journal, 78(3), 1606-1619. doi:10.1016/s0006-3495(00)76713-0 | es_ES |
dc.description.references | Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J., & Parcy, F. (2004). Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 561(1-3), 127-131. doi:10.1016/s0014-5793(04)00148-6 | es_ES |
dc.description.references | Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., & Leemans, J. (1985). Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants. Nucleic Acids Research, 13(13), 4777-4788. doi:10.1093/nar/13.13.4777 | es_ES |
dc.description.references | Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x | es_ES |
dc.description.references | Hua, J. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes & Development, 15(17), 2263-2272. doi:10.1101/gad.918101 | es_ES |
dc.description.references | Kabsch, W. (2010). XDS. Acta Crystallographica Section D Biological Crystallography, 66(2), 125-132. doi:10.1107/s0907444909047337 | es_ES |
dc.description.references | Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., … Wilson, K. S. (2011). Overview of theCCP4 suite and current developments. Acta Crystallographica Section D Biological Crystallography, 67(4), 235-242. doi:10.1107/s0907444910045749 | es_ES |
dc.description.references | Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., … Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography, 66(2), 213-221. doi:10.1107/s0907444909052925 | es_ES |
dc.description.references | Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126-2132. doi:10.1107/s0907444904019158 | es_ES |
dc.description.references | Dimasi, N., Flot, D., Dupeux, F., & Márquez, J. A. (2007). Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 63(3), 204-208. doi:10.1107/s1744309107004903 | es_ES |
dc.description.references | Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development ofCoot. Acta Crystallographica Section D Biological Crystallography, 66(4), 486-501. doi:10.1107/s0907444910007493 | es_ES |
dc.description.references | DeLano (2002) The PyMOL Molecular Graphics System, 1.5.0.4 (DeLano Scientific, San Carlos, CA) | es_ES |