- -

Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diaz, Maira es_ES
dc.contributor.author Sanchez-Barrena, Maria Jose es_ES
dc.contributor.author Gonzalez Rubio, Juana Maria es_ES
dc.contributor.author Rodríguez Solovey, Leisa Natacha es_ES
dc.contributor.author Fernández, Daniel es_ES
dc.contributor.author Antoni-Alandes, Regina es_ES
dc.contributor.author Yunta, Cristina es_ES
dc.contributor.author Belda Palazón, Borja es_ES
dc.contributor.author González Guzmán, Miguel es_ES
dc.contributor.author Peirats-Llobet, Marta es_ES
dc.contributor.author Menendez, Margarita es_ES
dc.contributor.author Boskovic, Jasminka es_ES
dc.contributor.author Marquez, Jose es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.contributor.author Albert, Armando es_ES
dc.date.accessioned 2017-06-07T10:07:54Z
dc.date.available 2017-06-07T10:07:54Z
dc.date.issued 2016-01-19
dc.identifier.issn 0027-8424
dc.identifier.uri http://hdl.handle.net/10251/82507
dc.description.abstract [EN] Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. es_ES
dc.description.sponsorship A.A. and J.A.M. thank the European Syncrotron Radiation Facility and EMBL for access to the synchrotron radiation source. This work was funded by Ministerio de Economia y Competitividad (MINECO) Grants BFU2014-59796-R (to A.A.), BFU2011-28184-C02 (to M.J.S.-B.), and BIO2014-52537-R (to P.L.R.) and Comunidad de Madrid Grant S2010/BMD-2457 (to A.A and M.M.). M.J.S.-B. is supported by Ramon y Cajal Contract RYC-2008-03449 from MINECO and M.D. by a fellowship from Senacyt-Ifarhu. Access to the High Throughput Crystallization facility at European Molecular Biology Laboratory (EMBL) Grenoble was supported by the European Community's Seventh Framework Programme through the Protein Production Platform project (P-CUBE) Grant 227764. en_EN
dc.language Inglés es_ES
dc.publisher National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Signaling es_ES
dc.subject ion transport es_ES
dc.subject Membrane biology es_ES
dc.subject Abiotic stress es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.1512779113
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/227764/EU/Infrastructure for Protein Production Platforms/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2014-59796-R/ES/BASES ESTRUCTURALES DE LOS DETERMINANTES PRINCIPALES DE LA HOMEOSTASIS IONICA EN PLANTAS: AVANCES EN EL MECANISMO REGULADOR DEL TRANSPORTE Y COMPARTIMENTALIZACION IONICA/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2010%2FBMD2457/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RYC-2008-03449/ES/RYC-2008-03449/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2011-28184-C02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Diaz, M.; Sanchez-Barrena, MJ.; Gonzalez Rubio, JM.; Rodríguez Solovey, LN.; Fernández, D.; Antoni-Alandes, R.; Yunta, C.... (2016). Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling. Proceedings of the National Academy of Sciences. 113(3):E396-E405. https://doi.org/10.1073/pnas.1512779113 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1073/pnas.1512779113 es_ES
dc.description.upvformatpinicio E396 es_ES
dc.description.upvformatpfin E405 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 308292 es_ES
dc.identifier.pmcid PMC4725540
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Comunidad de Madrid
dc.contributor.funder European Commission
dc.description.references Serrano, R., & Rodriguez-Navarro, A. (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13(4), 399-404. doi:10.1016/s0955-0674(00)00227-1 es_ES
dc.description.references Bassil, E., & Blumwald, E. (2014). The ins and outs of intracellular ion homeostasis: NHX-type cation/H + transporters. Current Opinion in Plant Biology, 22, 1-6. doi:10.1016/j.pbi.2014.08.002 es_ES
dc.description.references Batistič, O., & Kudla, J. (2012). Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(8), 1283-1293. doi:10.1016/j.bbagen.2011.10.012 es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122 es_ES
dc.description.references McAinsh, M. R., Brownlee, C., & Hetherington, A. M. (1990). Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature, 343(6254), 186-188. doi:10.1038/343186a0 es_ES
dc.description.references Maierhofer, T., Diekmann, M., Offenborn, J. N., Lind, C., Bauer, H., Hashimoto, K., … Hedrich, R. (2014). Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid. Science Signaling, 7(342), ra86-ra86. doi:10.1126/scisignal.2005703 es_ES
dc.description.references Allen, G. J., Kwak, J. M., Chu, S. P., Llopis, J., Tsien, R. Y., Harper, J. F., & Schroeder, J. I. (1999). Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. The Plant Journal, 19(6), 735-747. doi:10.1046/j.1365-313x.1999.00574.x es_ES
dc.description.references Lee, S. C., Lan, W.-Z., Kim, B.-G., Li, L., Cheong, Y. H., Pandey, G. K., … Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences, 104(40), 15959-15964. doi:10.1073/pnas.0707912104 es_ES
dc.description.references Sánchez-Barrena, M., Martínez-Ripoll, M., & Albert, A. (2013). Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway. International Journal of Molecular Sciences, 14(3), 5734-5749. doi:10.3390/ijms14035734 es_ES
dc.description.references Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291 es_ES
dc.description.references Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., & Grill, E. (2009). Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science. doi:10.1126/science.1172408 es_ES
dc.description.references Park, S.-Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., … Cutler, S. R. (2009). Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science. doi:10.1126/science.1173041 es_ES
dc.description.references Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x es_ES
dc.description.references Nishimura, N., Sarkeshik, A., Nito, K., Park, S.-Y., Wang, A., Carvalho, P. C., … Schroeder, J. I. (2009). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. The Plant Journal, 61(2), 290-299. doi:10.1111/j.1365-313x.2009.04054.x es_ES
dc.description.references Wang, P., Xue, L., Batelli, G., Lee, S., Hou, Y.-J., Van Oosten, M. J., … Zhu, J.-K. (2013). Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences, 110(27), 11205-11210. doi:10.1073/pnas.1308974110 es_ES
dc.description.references Umezawa, T., Sugiyama, N., Takahashi, F., Anderson, J. C., Ishihama, Y., Peck, S. C., & Shinozaki, K. (2013). Genetics and Phosphoproteomics Reveal a Protein Phosphorylation Network in the Abscisic Acid Signaling Pathway in Arabidopsis thaliana. Science Signaling, 6(270), rs8-rs8. doi:10.1126/scisignal.2003509 es_ES
dc.description.references Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: linking elements that control stomatal movement. New Phytologist, 203(1), 44-62. doi:10.1111/nph.12832 es_ES
dc.description.references Lind, C., Dreyer, I., López-Sanjurjo, E. J., von Meyer, K., Ishizaki, K., Kohchi, T., … Hedrich, R. (2015). Stomatal Guard Cells Co-opted an Ancient ABA-Dependent Desiccation Survival System to Regulate Stomatal Closure. Current Biology, 25(7), 928-935. doi:10.1016/j.cub.2015.01.067 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., … Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences, 106(50), 21425-21430. doi:10.1073/pnas.0912021106 es_ES
dc.description.references Imes, D., Mumm, P., Böhm, J., Al-Rasheid, K. A. S., Marten, I., Geiger, D., & Hedrich, R. (2013). Open stomata 1 (OST1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. The Plant Journal, 74(3), 372-382. doi:10.1111/tpj.12133 es_ES
dc.description.references Ishitani, M., Liu, J., Halfter, U., Kim, C.-S., Shi, W., & Zhu, J.-K. (2000). SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. The Plant Cell, 12(9), 1667-1677. doi:10.1105/tpc.12.9.1667 es_ES
dc.description.references Grefen, C., & Blatt, M. R. (2012). Do Calcineurin B-Like Proteins Interact Independently of the Serine Threonine Kinase CIPK23 with the K+ Channel AKT1? Lessons Learned from a Ménage à Trois. Plant Physiology, 159(3), 915-919. doi:10.1104/pp.112.198051 es_ES
dc.description.references Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. doi:10.1073/pnas.122224699 es_ES
dc.description.references Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., … Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. doi:10.1073/pnas.1018921108 es_ES
dc.description.references Núñez-Ramírez, R., Sánchez-Barrena, M. J., Villalta, I., Vega, J. F., Pardo, J. M., Quintero, F. J., … Albert, A. (2012). Structural Insights on the Plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ Antiporter. Journal of Molecular Biology, 424(5), 283-294. doi:10.1016/j.jmb.2012.09.015 es_ES
dc.description.references Ohta, M., Guo, Y., Halfter, U., & Zhu, J.-K. (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences, 100(20), 11771-11776. doi:10.1073/pnas.2034853100 es_ES
dc.description.references Xu, J., Li, H.-D., Chen, L.-Q., Wang, Y., Liu, L.-L., He, L., & Wu, W.-H. (2006). A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 125(7), 1347-1360. doi:10.1016/j.cell.2006.06.011 es_ES
dc.description.references Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., … Hedrich, R. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+affinities. Proceedings of the National Academy of Sciences, 107(17), 8023-8028. doi:10.1073/pnas.0912030107 es_ES
dc.description.references Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., … Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 109(26), 10593-10598. doi:10.1073/pnas.1116590109 es_ES
dc.description.references Rodriguez, L., Gonzalez-Guzman, M., Diaz, M., Rodrigues, A., Izquierdo-Garcia, A. C., Peirats-Llobet, M., … Rodriguez, P. L. (2014). C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis. The Plant Cell, 26(12), 4802-4820. doi:10.1105/tpc.114.129973 es_ES
dc.description.references Martens, S., & McMahon, H. T. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nature Reviews Molecular Cell Biology, 9(7), 543-556. doi:10.1038/nrm2417 es_ES
dc.description.references Martens, S., Kozlov, M. M., & McMahon, H. T. (2007). How Synaptotagmin Promotes Membrane Fusion. Science, 316(5828), 1205-1208. doi:10.1126/science.1142614 es_ES
dc.description.references Jahn, R., Lang, T., & Südhof, T. C. (2003). Membrane Fusion. Cell, 112(4), 519-533. doi:10.1016/s0092-8674(03)00112-0 es_ES
dc.description.references Sutter, J.-U., Sieben, C., Hartel, A., Eisenach, C., Thiel, G., & Blatt, M. R. (2007). Abscisic Acid Triggers the Endocytosis of the Arabidopsis KAT1 K+ Channel and Its Recycling to the Plasma Membrane. Current Biology, 17(16), 1396-1402. doi:10.1016/j.cub.2007.07.020 es_ES
dc.description.references Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708 es_ES
dc.description.references Larsen, J. B., Jensen, M. B., Bhatia, V. K., Pedersen, S. L., Bjørnholm, T., Iversen, L., … Stamou, D. (2015). Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nature Chemical Biology, 11(3), 192-194. doi:10.1038/nchembio.1733 es_ES
dc.description.references Demir, F., Horntrich, C., Blachutzik, J. O., Scherzer, S., Reinders, Y., Kierszniowska, S., … Kreuzer, I. (2013). Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proceedings of the National Academy of Sciences, 110(20), 8296-8301. doi:10.1073/pnas.1211667110 es_ES
dc.description.references Guerrero-Valero, M., Ferrer-Orta, C., Querol-Audi, J., Marin-Vicente, C., Fita, I., Gomez-Fernandez, J. C., … Corbalan-Garcia, S. (2009). Structural and mechanistic insights into the association of PKC -C2 domain to PtdIns(4,5)P2. Proceedings of the National Academy of Sciences, 106(16), 6603-6607. doi:10.1073/pnas.0813099106 es_ES
dc.description.references Guillen, J., Ferrer-Orta, C., Buxaderas, M., Perez-Sanchez, D., Guerrero-Valero, M., Luengo-Gil, G., … Corbalan-Garcia, S. (2013). Structural insights into the Ca2+ and PI(4,5)P2 binding modes of the C2 domains of rabphilin 3A and synaptotagmin 1. Proceedings of the National Academy of Sciences, 110(51), 20503-20508. doi:10.1073/pnas.1316179110 es_ES
dc.description.references Corbalan-Garcia, S., & Gómez-Fernández, J. C. (2014). Signaling through C2 domains: More than one lipid target. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(6), 1536-1547. doi:10.1016/j.bbamem.2014.01.008 es_ES
dc.description.references CHO, W., & STAHELIN, R. (2006). Membrane binding and subcellular targeting of C2 domains. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1761(8), 838-849. doi:10.1016/j.bbalip.2006.06.014 es_ES
dc.description.references Verdaguer, N., Corbalan-Garcia, S., Ochoa, W. F., Fita, I., & Gómez-Fernández, J. C. (1999). Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. The EMBO Journal, 18(22), 6329-6338. doi:10.1093/emboj/18.22.6329 es_ES
dc.description.references Honigmann, A., van den Bogaart, G., Iraheta, E., Risselada, H. J., Milovanovic, D., Mueller, V., … Jahn, R. (2013). Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural & Molecular Biology, 20(6), 679-686. doi:10.1038/nsmb.2570 es_ES
dc.description.references Ausili, A., Corbalán-García, S., Gómez-Fernández, J. C., & Marsh, D. (2011). Membrane docking of the C2 domain from protein kinase Cα as seen by polarized ATR-IR. The role of PIP2. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(3), 684-695. doi:10.1016/j.bbamem.2010.11.035 es_ES
dc.description.references Hermoso, J. A., Lagartera, L., González, A., Stelter, M., García, P., Martínez-Ripoll, M., … Menéndez, M. (2005). Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nature Structural & Molecular Biology, 12(6), 533-538. doi:10.1038/nsmb940 es_ES
dc.description.references Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7(2), 169-177. doi:10.1016/s0969-2126(99)80023-9 es_ES
dc.description.references Ochoa, W. F., Garcia-Garcia, J., Fita, I., Corbalan-Garcia, S., Verdaguer, N., & Gomez-Fernandez, J. C. (2001). Structure of the C2 domain from novel protein kinase Cϵ. A membrane binding model for Ca2+-independent C2 domains. Journal of Molecular Biology, 311(4), 837-849. doi:10.1006/jmbi.2001.4910 es_ES
dc.description.references Fuson, K., Rice, A., Mahling, R., Snow, A., Nayak, K., Shanbhogue, P., … Sutton, R. B. (2014). Alternate Splicing of Dysferlin C2A Confers Ca2+-Dependent and Ca2+-Independent Binding for Membrane Repair. Structure, 22(1), 104-115. doi:10.1016/j.str.2013.10.001 es_ES
dc.description.references Radhakrishnan, A., Stein, A., Jahn, R., & Fasshauer, D. (2009). The Ca2+Affinity of Synaptotagmin 1 Is Markedly Increased by a Specific Interaction of Its C2B Domain with Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 284(38), 25749-25760. doi:10.1074/jbc.m109.042499 es_ES
dc.description.references Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., … Botella, M. A. (2008). Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability. The Plant Cell, 20(12), 3374-3388. doi:10.1105/tpc.108.063859 es_ES
dc.description.references Wang, J., Bello, O., Auclair, S. M., Wang, J., Coleman, J., Pincet, F., … Rothman, J. E. (2014). Calcium sensitive ring-like oligomers formed by synaptotagmin. Proceedings of the National Academy of Sciences, 111(38), 13966-13971. doi:10.1073/pnas.1415849111 es_ES
dc.description.references Jaenicke, R., & Rudolph, R. (1986). [12]Refolding and association of oligomeric proteins. Enzyme Structure Part L, 218-250. doi:10.1016/0076-6879(86)31043-7 es_ES
dc.description.references Goni, G. M., Epifano, C., Boskovic, J., Camacho-Artacho, M., Zhou, J., Bronowska, A., … Lietha, D. (2014). Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proceedings of the National Academy of Sciences, 111(31), E3177-E3186. doi:10.1073/pnas.1317022111 es_ES
dc.description.references Wilkie, A. O. (1994). The molecular basis of genetic dominance. Journal of Medical Genetics, 31(2), 89-98. doi:10.1136/jmg.31.2.89 es_ES
dc.description.references Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M. P., Nicolas, C., Lorenzo, O., & Rodriguez, P. L. (2003). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2CHAB1reveal its role as a negative regulator of abscisic acid signalling. The Plant Journal, 37(3), 354-369. doi:10.1046/j.1365-313x.2003.01966.x es_ES
dc.description.references Simons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688-699. doi:10.1038/nrm2977 es_ES
dc.description.references McMahon, H. T., & Boucrot, E. (2015). Membrane curvature at a glance. Journal of Cell Science, 128(6), 1065-1070. doi:10.1242/jcs.114454 es_ES
dc.description.references Tapken, W., & Murphy, A. S. (2015). Membrane nanodomains in plants: capturing form, function, and movement. Journal of Experimental Botany, 66(6), 1573-1586. doi:10.1093/jxb/erv054 es_ES
dc.description.references Lingwood, D., & Simons, K. (2007). Detergent resistance as a tool in membrane research. Nature Protocols, 2(9), 2159-2165. doi:10.1038/nprot.2007.294 es_ES
dc.description.references Schuck, P. (2000). Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophysical Journal, 78(3), 1606-1619. doi:10.1016/s0006-3495(00)76713-0 es_ES
dc.description.references Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J., & Parcy, F. (2004). Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 561(1-3), 127-131. doi:10.1016/s0014-5793(04)00148-6 es_ES
dc.description.references Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., & Leemans, J. (1985). Efficient octopine Ti plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants. Nucleic Acids Research, 13(13), 4777-4788. doi:10.1093/nar/13.13.4777 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Hua, J. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes & Development, 15(17), 2263-2272. doi:10.1101/gad.918101 es_ES
dc.description.references Kabsch, W. (2010). XDS. Acta Crystallographica Section D Biological Crystallography, 66(2), 125-132. doi:10.1107/s0907444909047337 es_ES
dc.description.references Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., … Wilson, K. S. (2011). Overview of theCCP4 suite and current developments. Acta Crystallographica Section D Biological Crystallography, 67(4), 235-242. doi:10.1107/s0907444910045749 es_ES
dc.description.references Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., … Zwart, P. H. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography, 66(2), 213-221. doi:10.1107/s0907444909052925 es_ES
dc.description.references Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60(12), 2126-2132. doi:10.1107/s0907444904019158 es_ES
dc.description.references Dimasi, N., Flot, D., Dupeux, F., & Márquez, J. A. (2007). Expression, crystallization and X-ray data collection from microcrystals of the extracellular domain of the human inhibitory receptor expressed on myeloid cells IREM-1. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 63(3), 204-208. doi:10.1107/s1744309107004903 es_ES
dc.description.references Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development ofCoot. Acta Crystallographica Section D Biological Crystallography, 66(4), 486-501. doi:10.1107/s0907444910007493 es_ES
dc.description.references DeLano (2002) The PyMOL Molecular Graphics System, 1.5.0.4 (DeLano Scientific, San Carlos, CA) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem