- -

Iterated starcompact topological spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Iterated starcompact topological spaces

Show full item record

Kim, J. (2004). Iterated starcompact topological spaces. Applied General Topology. 5(1):1-10. doi:10.4995/agt.2004.1991.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82542

Files in this item

Item Metadata

Title: Iterated starcompact topological spaces
Author: Kim, Junhui
Issued date:
Abstract:
[EN] Let P be a topological property. A space X is said to be k-P-starcompact if for every open cover U of X, there is a subspace A C X with P such that stk(A,U) = X. In this paper, we consider k-P- starcompactness for ...[+]
Subjects: Countably compact , n-starcompact , (n, k)-starcompact , Pseudocompact
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2004.1991
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2004.1991
Type: Artículo

References

Van Douwen, E. K., Reed, G. M., Roscoe, A. W., & Tree, I. J. (1991). Star covering properties. Topology and its Applications, 39(1), 71-103. doi:10.1016/0166-8641(91)90077-y

R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.

S. Ikenaga, Topological concepts between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology, 26 (1990), 103-108. [+]
Van Douwen, E. K., Reed, G. M., Roscoe, A. W., & Tree, I. J. (1991). Star covering properties. Topology and its Applications, 39(1), 71-103. doi:10.1016/0166-8641(91)90077-y

R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.

S. Ikenaga, Topological concepts between Lindelöf and Pseudo-Lindelöf, Research Reports of Nara National College of Technology, 26 (1990), 103-108.

S. Ikenaga and T. Tani, On a topological concept between countable compactness and pseudocompactness, Research Reports of Numazu Technical College, 15 (1980), 139-142.

Tree, I. J. (1992). Constructing regular 2-starcompact spaces that are not strongly 2-star-Lindelöf. Topology and its Applications, 47(2), 129-132. doi:10.1016/0166-8641(92)90067-a

[-]

This item appears in the following Collection(s)

Show full item record