Mostrar el registro sencillo del ítem
dc.contributor.author | Carter, Sheila | es_ES |
dc.contributor.author | Craveiro de Carvalho, F.J. | es_ES |
dc.date.accessioned | 2017-06-08T06:54:05Z | |
dc.date.available | 2017-06-08T06:54:05Z | |
dc.date.issued | 2004-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82548 | |
dc.description.abstract | [EN] Up to homeomorphism, there are 9 topologies on a three point set {a, b, c}. Among the resulting topological spaces we have the so called Davey space, where the only non-trivial open set is, let us say, {a}. This is an interesting topological space to the extent that every topological space can be embedded in a product of Davey spaces. In this note we will consider the problem of obtaining the Davey space as a quotient R/G, where G is a suitable homeomorphism group. The present work can be regarded as a follow-up to some previous work done by one of the authors and Bernd Wegner. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Davey space | es_ES |
dc.subject | Homeomorphism group | es_ES |
dc.subject | Cantor set | es_ES |
dc.title | Homeomorphisms of R and the Davey Space | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-06-08T06:28:34Z | |
dc.identifier.doi | 10.4995/agt.2004.1997 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Carter, S.; Craveiro De Carvalho, F. (2004). Homeomorphisms of R and the Davey Space. Applied General Topology. 5(1):91-96. https://doi.org/10.4995/agt.2004.1997 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2004.1997 | es_ES |
dc.description.upvformatpinicio | 91 | es_ES |
dc.description.upvformatpfin | 96 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | F. J. Craveiro de Carvalho and BerndWegner, Locally Sierpinski spaces as interval quotients, Kyungpook Math. J. 42 (2002), 165-169. | es_ES |
dc.description.references | Sidney A. Morris, Are finite topological spaces worthy of study?, Austral. Math. Soc. Gazette 11 (1984), 563-564. | es_ES |
dc.description.references | James R. Munkres, Topology, a first course, Prentice-Hall, Inc., 1975. | es_ES |