- -

Continuous functions with compact support

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Continuous functions with compact support

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acharyya, Sudip Kumar es_ES
dc.contributor.author Chattopadhyaya, K.C. es_ES
dc.contributor.author Ghosh, Partha Pratim es_ES
dc.date.accessioned 2017-06-08T06:58:29Z
dc.date.available 2017-06-08T06:58:29Z
dc.date.issued 2004-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/82550
dc.description.abstract [EN] The main aim of this paper is to investigate a subring of the ring of continuous functions on a topological space X with values in a linearly ordered field F equipped with its order topology, namely the ring of continuous functions with compact support. Unless X is compact, these rings are commutative rings without unity. However, unlike many other commutative rings without unity, these rings turn out to have some nice properties, essentially in determining the property of X being locally compact non-compact or the property of X being nowhere locally compact. Also, one can associate with these rings a topological space resembling the structure space of a commutative ring with unity, such that the classical Banach Stone Theorem can be generalized to the case when the range field is that of the reals. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ordered Fields es_ES
dc.subject Zero Dimensional Spaces es_ES
dc.subject Strongly Zero Dimensional Spaces es_ES
dc.subject Compactifications es_ES
dc.title Continuous functions with compact support es_ES
dc.type Artículo es_ES
dc.date.updated 2017-06-08T06:28:28Z
dc.identifier.doi 10.4995/agt.2004.1999
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Acharyya, SK.; Chattopadhyaya, K.; Ghosh, PP. (2004). Continuous functions with compact support. Applied General Topology. 5(1):103-113. https://doi.org/10.4995/agt.2004.1999 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2004.1999 es_ES
dc.description.upvformatpinicio 103 es_ES
dc.description.upvformatpfin 113 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references W. Wieslaw, Topological Fields, Marcell Dekker (1978). es_ES
dc.description.references S. Mrowka and R. Engelking, On E-compact spaces, Bull. Acad. Polon. sci. Ser. sci. Math. Astronom. Phys. 6 (1958), 429–435. es_ES
dc.description.references Gillman, L., & Jerison, M. (1960). Rings of Continuous Functions. doi:10.1007/978-1-4615-7819-2 es_ES
dc.description.references S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, The rings Ck(X) and C∞(X), some remarks, Kyungpook Journal of Mathematics, 43 (2003), 363 - 369. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem