Mostrar el registro sencillo del ítem
dc.contributor.author | Acharyya, Sudip Kumar | es_ES |
dc.contributor.author | Chattopadhyaya, K.C. | es_ES |
dc.contributor.author | Ghosh, Partha Pratim | es_ES |
dc.date.accessioned | 2017-06-08T06:58:29Z | |
dc.date.available | 2017-06-08T06:58:29Z | |
dc.date.issued | 2004-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82550 | |
dc.description.abstract | [EN] The main aim of this paper is to investigate a subring of the ring of continuous functions on a topological space X with values in a linearly ordered field F equipped with its order topology, namely the ring of continuous functions with compact support. Unless X is compact, these rings are commutative rings without unity. However, unlike many other commutative rings without unity, these rings turn out to have some nice properties, essentially in determining the property of X being locally compact non-compact or the property of X being nowhere locally compact. Also, one can associate with these rings a topological space resembling the structure space of a commutative ring with unity, such that the classical Banach Stone Theorem can be generalized to the case when the range field is that of the reals. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ordered Fields | es_ES |
dc.subject | Zero Dimensional Spaces | es_ES |
dc.subject | Strongly Zero Dimensional Spaces | es_ES |
dc.subject | Compactifications | es_ES |
dc.title | Continuous functions with compact support | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-06-08T06:28:28Z | |
dc.identifier.doi | 10.4995/agt.2004.1999 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Acharyya, SK.; Chattopadhyaya, K.; Ghosh, PP. (2004). Continuous functions with compact support. Applied General Topology. 5(1):103-113. https://doi.org/10.4995/agt.2004.1999 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2004.1999 | es_ES |
dc.description.upvformatpinicio | 103 | es_ES |
dc.description.upvformatpfin | 113 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | W. Wieslaw, Topological Fields, Marcell Dekker (1978). | es_ES |
dc.description.references | S. Mrowka and R. Engelking, On E-compact spaces, Bull. Acad. Polon. sci. Ser. sci. Math. Astronom. Phys. 6 (1958), 429–435. | es_ES |
dc.description.references | Gillman, L., & Jerison, M. (1960). Rings of Continuous Functions. doi:10.1007/978-1-4615-7819-2 | es_ES |
dc.description.references | S. K. Acharyya, K. C. Chattopadhyaya and P. P. Ghosh, The rings Ck(X) and C∞(X), some remarks, Kyungpook Journal of Mathematics, 43 (2003), 363 - 369. | es_ES |