- -

Abelization of join spaces of affine transformations of ordered field with proximity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Abelization of join spaces of affine transformations of ordered field with proximity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hosková, Sárka es_ES
dc.date.accessioned 2017-06-09T07:34:01Z
dc.date.available 2017-06-09T07:34:01Z
dc.date.issued 2005-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/82623
dc.description.abstract [EN] Using groups of affine transformations of linearly ordered fields a certain construction of non-commutative join hypergroups is presented based on the criterion of reproducibility of semi-hypergroups which are determined by ordered semigroups. The aim of this paper is to construct the abelization of the non-commutative join space of affine transformations of ordered fields. A construction of commutative weakly associative hypergroup (Hv-group) is made and a proximity is defined on this structure. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Transformation group es_ES
dc.subject Join space es_ES
dc.subject Abelization es_ES
dc.subject Hyperoperation es_ES
dc.subject Hyperstructures es_ES
dc.subject Weak associativity es_ES
dc.title Abelization of join spaces of affine transformations of ordered field with proximity es_ES
dc.type Artículo es_ES
dc.date.updated 2017-06-09T06:18:25Z
dc.identifier.doi 10.4995/agt.2005.1963
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hosková, S. (2005). Abelization of join spaces of affine transformations of ordered field with proximity. Applied General Topology. 6(1):57-65. https://doi.org/10.4995/agt.2005.1963 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2005.1963 es_ES
dc.description.upvformatpinicio 57 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references E. Cech, Topological Spaces, revised by Z. Frol’ık and M. Katˇetov, (Academia, Praha 1966). es_ES
dc.description.references P. Corsini, Prolegomena of Hypergroup Theory, (Aviani Editore Tricesimo 1993). es_ES
dc.description.references J. Chvalina, S. Hosková, Join space of first-order linear partial differential operators with compatible proximity induced by a congruence on their group, Proc. of Mathematical and Computer modelling in Science and Engineering, Prague (2003), 166-170. es_ES
dc.description.references S. Hosková, Examples of abelization of hypergroups based on their direct products, Sborník VA, part B, 2, 7–19, (2002). es_ES
dc.description.references S. Hosková, Abelization of differential rings, Proc. of the 1st International mathematical workshop FAST VUT Brno, 2p., (2002). es_ES
dc.description.references S. Hosková, Abelization of a certain representation of non-commutative join space, Proc. of International Conference Aplimat 2003, Bratislava, Slovakia, (2003), 365–368. es_ES
dc.description.references S. Hosková, J. Chvalina, Abelization of proximal Hv-rings using graphs of good homomorphisms and diagonals of direct squares of hyperstructures, Proceedings of 8th Internat. Congress on AHA, Samothraki, Greece (2002), 147–159. es_ES
dc.description.references Jantosciak, J. (1997). Transposition Hypergroups: Noncommutative Join Spaces. Journal of Algebra, 187(1), 97-119. doi:10.1006/jabr.1997.6789 es_ES
dc.description.references T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Monographs in Mathematics, (Palm Harbor Florida 1994). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem