- -

δ-closure, θ-closure and generalized closed sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

δ-closure, θ-closure and generalized closed sets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cao, Jiling es_ES
dc.contributor.author Ganster, Maximilian es_ES
dc.contributor.author Reilly, Ivan L. es_ES
dc.contributor.author Steiner, Markus es_ES
dc.date.accessioned 2017-06-09T07:36:32Z
dc.date.available 2017-06-09T07:36:32Z
dc.date.issued 2005-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/82624
dc.description.abstract [EN] We study some new classes of generalized closed sets (in the sense of N. Levine) in a topological space via the associated δ-closure and θ-closure. The relationships among these new classes and existing classes of generalized closed sets are investigated. In the last section we provide an extensive and more or less complete survey on separation axioms characterized via singletons. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject δ-closed es_ES
dc.subject θ-closed es_ES
dc.subject qr-closed es_ES
dc.subject separation properties es_ES
dc.title δ-closure, θ-closure and generalized closed sets es_ES
dc.type Artículo es_ES
dc.date.updated 2017-06-09T06:18:29Z
dc.identifier.doi 10.4995/agt.2005.1964
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Cao, J.; Ganster, M.; Reilly, IL.; Steiner, M. (2005). δ-closure, θ-closure and generalized closed sets. Applied General Topology. 6(1):79-86. https://doi.org/10.4995/agt.2005.1964 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2005.1964 es_ES
dc.description.upvformatpinicio 79 es_ES
dc.description.upvformatpfin 86 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Cao, J., Ganster, M., & Reilly, I. (2002). On generalized closed sets. Topology and its Applications, 123(1), 37-46. doi:10.1016/s0166-8641(01)00167-5 es_ES
dc.description.references J. Cao, M. Ganster and I. Reilly, Submaximality, extremal disconnectedness and generalized closed sets, Houston J. Math. 24 (1998), 681-688. es_ES
dc.description.references Cao, J., Greenwood, S., & Reilly, I. L. (2001). Generalized closed sets: a unified approach. Applied General Topology, 2(2), 179. doi:10.4995/agt.2001.2148 es_ES
dc.description.references K. Dlaska and M. Ganster, S-sets and co-S-closed topologies, Indian J. Pure Appl. Math. 23 (1992), 731-737. es_ES
dc.description.references J. Dontchev and M. Ganster, On δ-generalized closed sets and T3/4 spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 15-31. es_ES
dc.description.references Dontchev, J., & Maki, H. (1999). Onθ-generalized closed sets. International Journal of Mathematics and Mathematical Sciences, 22(2), 239-249. doi:10.1155/s0161171299222399 es_ES
dc.description.references W. Dunham, T1/2-spaces, Kyungpook Math. J. 17 (1977), 161-169. es_ES
dc.description.references D. Jankovic, On some separation axioms and θ-closure, Mat. Vesnik 32 (4) (1980), 439-449. es_ES
dc.description.references D. Jankovic and I. Reilly, On semi-separation properties, Indian J. Pure Appl. Math. 16 (1985), 957-964. es_ES
dc.description.references Levine, N. (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19(1), 89-96. doi:10.1007/bf02843888 es_ES
dc.description.references Veličko, N. V. (1968). 𝐻-closed topological spaces. Eleven Papers on Topology, 103-118. doi:10.1090/trans2/078/05 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem