- -

Feature representation for social circles detection using MAC

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Feature representation for social circles detection using MAC

Show full item record

Alonso-Nanclares, JA.; Paredes Palacios, R.; Rosso, P. (2016). Feature representation for social circles detection using MAC. Neural Computing and Applications. 1-8. doi:10.1007/s00521-016-2222-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/82638

Files in this item

Item Metadata

Title: Feature representation for social circles detection using MAC
Author:
UPV Unit: Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Issued date:
Abstract:
Social circles detection is a special case of community detection in social network that is currently attracting a growing interest in the research community. In this paper, we propose an empirical evaluation of the ...[+]
Subjects: Social circles detection , Community detection , Feature representation , Multi-assignment clustering , Evaluation metrics
Copyrigths: Reserva de todos los derechos
Source:
Neural Computing and Applications. (issn: 0941-0643 )
DOI: 10.1007/s00521-016-2222-y
Publisher:
Springer Verlag (Germany)
Publisher version: https://link.springer.com/article/10.1007/s00521-016-2222-y
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/s00521-016-2222-y
Thanks:
This work was developed in the framework of the W911NF-14-1-0254 research project Social Copying Community Detection (SOCOCODE), funded by the US Army Research Office (ARO). The work of the first author is financed by Grant ...[+]
Type: Artículo

References

Alonso J, Paredes R, Rosso P (2015) Empirical evaluation of different feature representations for social circles detection. In: Pattern recognition and image analysis, lecture notes in computer science, vol. 9117, pp 31–38. Springer, Berlin. doi: 10.1007/978-3-319-19390-8_4

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theor Exp 2008:P10, 008

Brandes U, Delling D, Gaertler M, Gaerke R, Hoefer M, Nikoloski Z, Wagner D (2006) On modularity-NP-completeness and beyond. Technical Report. 2006–19, ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH), Germany [+]
Alonso J, Paredes R, Rosso P (2015) Empirical evaluation of different feature representations for social circles detection. In: Pattern recognition and image analysis, lecture notes in computer science, vol. 9117, pp 31–38. Springer, Berlin. doi: 10.1007/978-3-319-19390-8_4

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theor Exp 2008:P10, 008

Brandes U, Delling D, Gaertler M, Gaerke R, Hoefer M, Nikoloski Z, Wagner D (2006) On modularity-NP-completeness and beyond. Technical Report. 2006–19, ITI Wagner, Faculty of Informatics, Universität Karlsruhe (TH), Germany

Buhmann J, Kuhnel H (1993) Vector quantization with complexity costs. IEEE Trans Inf Theory 39(4):1133–1145

Chen Y, Lin C (2006) Combining SVMs with various feature selection strategies. In: Feature extraction, pp 315–324

Dey K, Bandyopadhyay S (2013) An empirical investigation of like-mindedness of topically related social communities on microblogging platforms. In: International conference on natural languages

Donath WE, Hoffman AJ (1973) Lower bounds for the partitioning of graphs. IBM J Res Dev 17(5):420–425

Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, London

Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

Frank M, Streich AP, Basin D, Buhmann JM (2012) Multi-assignment clustering for Boolean data. J Mach Learn Res 13(1):459–489

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, Berlin

Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bulletin de la Socit Vaudoise des Sciences Naturelles 44(163):223–270

Kaggle: Learning social circles in networks. http://www.kaggle.com/c/learning-social-circles

Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(2):291–307

Leskovec J, Krevl A (2014) SNAP datasets: stanford large network dataset collection. http://snap.stanford.edu/data

Leskovec J, Mcauley J (2012) Learning to discover social circles in ego networks. In: Pereira F, Burges C, Bottou L, Weinberger K (eds) Advances in neural information processing systems, vol 25. Curran Associates, Inc., Red Hook, pp 539–547

Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of fifth Berkeley symposium on Mathematical Statistics and Probability, vol 1, pp 281–297

McAuley J, Leskovec J (2014) Discovering social circles in ego networks. ACM Trans Knowl Discov Data 8(1):4

Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5(1):32–38

Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

Newman ME, Girvan M (2014) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2):026,113

Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

Pathak N, DeLong C, Banerjee A, Erickson K (2008) Social topic models for community extraction. In: The 2nd SNA-KDD workshop

Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not Am Math Soc 56(9):1082–1097

Rose K, Gurewitz E, Fox GC (1992) Vector quantization by deterministic annealing. IEEE Trans Inf Theory 38(4):1249–1257

Sachan M, Contractor D, Faruqie TA, Subramaniam LV (2012) Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st international conference on World Wide Web, pp 331–340

Streich AP, Frank M, Basin D, Buhmann JM (2009) Multi-assignment clustering for boolean data. In: Proceedings of the 26th annual international conference on machine learning, pp 969–976

Suaris PR, Kedem G (1988) An algorithm for quadrisection and its applications to standard cell placement. IEEE Trans Circuits Syst 35(3):294–303

Vaidya J, Atluri V, Guo Q (2007) The role mining problem: finding a minimal descriptive set of roles. In: Proceedings of the 12th ACM symposium on access control models and technologies, pp 175–184

Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: IEEE 13th international conference on data mining (ICDM), pp 1151–1156. IEEE

Zhou D, Councill I, Zha H, Giles CL (2007) Discovering temporal communities from social network documents. In: Seventh IEEE international conference on data mining, pp 745–750

[-]

This item appears in the following Collection(s)

Show full item record