- -

Squeezing Bottlenecks: Exploring the Limits of Autoencoder Semantic Representation Capabilities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Squeezing Bottlenecks: Exploring the Limits of Autoencoder Semantic Representation Capabilities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gupta, Parth Alokkumar es_ES
dc.contributor.author Banchs, Rafael es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.date.accessioned 2017-06-09T10:58:11Z
dc.date.available 2017-06-09T10:58:11Z
dc.date.issued 2016-01-29
dc.identifier.issn 0925-2312
dc.identifier.uri http://hdl.handle.net/10251/82646
dc.description This is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurocomputing 175 (2016) 1001–1008. DOI 10.1016/j.neucom.2015.06.091. es_ES
dc.description.abstract [EN] We present a comprehensive study on the use of autoencoders for modelling text data, in which (differently from previous studies) we focus our attention on the various issues. We explore the suitability of two different models binary deep autencoders (bDA) and replicated-softmax deep autencoders (rsDA) for constructing deep autoencoders for text data at the sentence level. We propose and evaluate two novel metrics for better assessing the text-reconstruction capabilities of autoencoders. We propose an automatic method to find the critical bottleneck dimensionality for text representations (below which structural information is lost); and finally we conduct a comparative evaluation across different languages, exploring the regions of critical bottleneck dimensionality and its relationship to language perplexity. & 2015 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship A significant part of this research work was conducted during the first author's attachment to the HLT department of I2R in Singapore. The work of the first and third authors was carried out in the framework of the WIQ-EI IRSES project (Grant no. 269180) within the FP 7 Marie Curie, the DIANA APPLICATIONS Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) project and the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Neurocomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Text representation es_ES
dc.subject Deep autoencoder es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Squeezing Bottlenecks: Exploring the Limits of Autoencoder Semantic Representation Capabilities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.neucom.2015.06.091
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/269180/EU/Web Information Quality Evaluation Initiative/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-38603-C02-01/ES/DIANA-APPLICATIONS: FINDING HIDDEN KNOWLEDGE IN TEXTS: APPLICATIONS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Gupta, PA.; Banchs, R.; Rosso, P. (2016). Squeezing Bottlenecks: Exploring the Limits of Autoencoder Semantic Representation Capabilities. Neurocomputing. 175:1001-1008. https://doi.org/10.1016/j.neucom.2015.06.091 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.neucom.2015.06.091 es_ES
dc.description.upvformatpinicio 1001 es_ES
dc.description.upvformatpfin 1008 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 175 es_ES
dc.relation.senia 326668 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem