Mostrar el registro sencillo del ítem
dc.contributor.author | Gupta, Parth Alokkumar | es_ES |
dc.contributor.author | Costa-Jussa, Marta R | es_ES |
dc.contributor.author | Rosso, Paolo | es_ES |
dc.contributor.author | Banchs, Rafael | es_ES |
dc.date.accessioned | 2017-06-09T11:41:11Z | |
dc.date.available | 2017-06-09T11:41:11Z | |
dc.date.issued | 2016-05 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.uri | http://hdl.handle.net/10251/82653 | |
dc.description | this is the author’s version of a work that was accepted for publication in Pattern Recognition Letters . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 75 (2016) 24–29. DOI 10.1016/j.patrec.2016.02.014. | es_ES |
dc.description.abstract | This paper presents a methodology to address lexical disambiguation in a standard phrase-based statistical machine translation system. Similarity among source contexts is used to select appropriate translation units. The information is introduced as a novel feature of the phrase-based model and it is used to select the translation units extracted from the training sentence more similar to the sentence to translate. The similarity is computed through a deep autoencoder representation, which allows to obtain effective lowdimensional embedding of data and statistically significant BLEU score improvements on two different tasks (English-to-Spanish and English-to-Hindi). © 2016 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | The work of the first author has been supported by FPI UPV pre-doctoral grant (num. registro - 3505). The work of the second author has been supported by Spanish Ministerio de Economia y Competitividad, contract TEC2015-69266-P and the Seventh Framework Program of the European Commission through the International Outgoing Fellowship Marie Curie Action (IMTraP-2011-29951). The work of the third author has been supported by the Spanish Ministerio de Economia y Competitividad, SomEMBED TIN2015-71147-C2-1-P research project and by the Generalitat Valenciana under the grant ALMAPATER (PrometeoII/2014/030). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Pattern Recognition Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Natural language processing | es_ES |
dc.subject | Neural nets and related approaches | es_ES |
dc.subject | Semantics | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | A Deep Source-Context Feature for Lexical Selection in Statistical Machine Translation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.patrec.2016.02.014 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-69266-P/ES/TECNOLOGIAS DE APRENDIZAJE PROFUNDO APLICADAS AL PROCESADO DE VOZ Y AUDIO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/29951/EU/International Outgoing Fellowship Marie Curie Action | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F030/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Gupta, PA.; Costa-Jussa, MR.; Rosso, P.; Banchs, R. (2016). A Deep Source-Context Feature for Lexical Selection in Statistical Machine Translation. Pattern Recognition Letters. 75:24-29. https://doi.org/10.1016/j.patrec.2016.02.014 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.patrec.2016.02.014 | es_ES |
dc.description.upvformatpinicio | 24 | es_ES |
dc.description.upvformatpfin | 29 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.relation.senia | 326669 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Commission |