- -

A survey on pre-processing techniques: Relevant issues in the context of environmental data mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A survey on pre-processing techniques: Relevant issues in the context of environmental data mining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gibert, Karina es_ES
dc.contributor.author Sanchez-Marre, Miquel es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2017-06-13T11:13:33Z
dc.date.available 2017-06-13T11:13:33Z
dc.date.issued 2016
dc.identifier.issn 0921-7126
dc.identifier.uri http://hdl.handle.net/10251/82753
dc.description.abstract One of the important issues related with all types of data analysis, either statistical data analysis, machine learning, data mining, data science or whatever form of data-driven modeling, is data quality. The more complex the reality to be analyzed is, the higher the risk of getting low quality data. Unfortunately real data often contain noise, uncertainty, errors, redundancies or even irrelevant information. Useless models will be obtained when built over incorrect or incomplete data. As a consequence, the quality of decisions made over these models, also depends on data quality. This is why pre-processing is one of the most critical steps of data analysis in any of its forms. However, pre-processing has not been properly systematized yet, and little research is focused on this. In this paper a survey on most popular pre-processing steps required in environmental data analysis is presented, together with a proposal to systematize it. Rather than providing technical details on specific pre-processing techniques, the paper focus on providing general ideas to a non-expert user, who, after reading them, can decide which one is the more suitable technique required to solve his/her problem. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof AI Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pre-processing es_ES
dc.subject Data quality es_ES
dc.subject Data mining es_ES
dc.subject Knowledge discovery from databases es_ES
dc.subject Multidisciplinary approach es_ES
dc.subject Environmental systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A survey on pre-processing techniques: Relevant issues in the context of environmental data mining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3233/AIC-160710
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Gibert, K.; Sanchez-Marre, M.; Izquierdo Sebastián, J. (2016). A survey on pre-processing techniques: Relevant issues in the context of environmental data mining. AI Communications. 29(6):627-663. doi:10.3233/AIC-160710 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3233/AIC-160710 es_ES
dc.description.upvformatpinicio 627 es_ES
dc.description.upvformatpfin 663 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 322050 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem